cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196087 Sum of all parts minus the total numbers of parts of all partitions of n.

This page as a plain text file.
%I A196087 #67 Oct 02 2022 00:35:09
%S A196087 0,1,3,8,15,31,51,90,142,228,341,525,757,1110,1572,2233,3084,4286,
%T A196087 5812,7910,10580,14145,18659,24626,32099,41814,53976,69559,88932,
%U A196087 113557,143967,182241,229353,288078,360029,449158,557757,691369,853628,1051974
%N A196087 Sum of all parts minus the total numbers of parts of all partitions of n.
%C A196087 Also sum of parts of all partitions of n except the largest parts of the partitions. - _Omar E. Pol_, Feb 16 2012
%C A196087 Equals column 1 of A161224. - _Omar E. Pol_, Feb 26 2012
%C A196087 Partial sums of A207035. - _Omar E. Pol_, Apr 22 2012
%H A196087 Alois P. Heinz, <a href="/A196087/b196087.txt">Table of n, a(n) for n = 1..1000</a>
%F A196087 a(n) = n*A000041(n) - A006128(n) = A066186(n) - A006128(n).
%F A196087 a(n) = A207038(A000041(n)). - _Omar E. Pol_, Apr 21 2012
%F A196087 a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (3 + 6*gamma + Pi^2/24 + 3*log(6*n/Pi^2))/(Pi*sqrt(6*n))), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 24 2016
%F A196087 G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k)^2 / Product_{j>=1} (1 - x^j). - _Ilya Gutkovskiy_, Mar 05 2021
%F A196087 a(n) = Sum_{k=1..n-1} p(n+j,j), where p(n,j) is the number of partitions of j having exactly j parts. E.g., a(4) = p(5,1) + p(6,2) + p(7,3) = 1+3+4 = 8. - _Gregory L. Simay_, Aug 19 2022
%e A196087 For n = 4 the five partitions of 4 are: 4, 3+1, 2+2, 2+1+1, 1+1+1+1. The sum of all parts is 4+3+1+2+2+2+1+1+1+1+1+1 = 20. The sum of all parts is also the product n*p(n) = 4*5 = 20, where p(n) = A000041(n) is the number of partitions of n. On the other hand the number of parts in all partitions of 4 is equal to 12, so a(4) = 20-12 = 8.
%p A196087 b:= proc(n, i) option remember; local f, g;
%p A196087       if n=0 then [1, 0]
%p A196087     elif i<1 then [0, 0]
%p A196087     elif i>n then b(n, i-1)
%p A196087     else f:= b(n, i-1); g:= b(n-i, i);
%p A196087          [f[1]+g[1], f[2]+g[2] +g[1]*(i-1)]
%p A196087       fi
%p A196087     end:
%p A196087 a:= n-> b(n, n)[2]:
%p A196087 seq(a(n), n=1..50);  # _Alois P. Heinz_, Feb 20 2012
%t A196087 b[n_, i_] := b[n, i] = Module[{f, g}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*(i-1)}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Oct 22 2015, after _Alois P. Heinz_ *)
%o A196087 (PARI) a(n) = n*numbpart(n) - sum(m=1, n, numdiv(m)*numbpart(n-m)); \\ _Michel Marcus_, Oct 22 2015
%Y A196087 Cf. A000041, A006128, A066186, A207034.
%K A196087 nonn
%O A196087 1,3
%A A196087 _Omar E. Pol_, Nov 10 2011