A196088 Positive integers a for which there is a (5/3)-Pythagorean triple (a,b,c) satisfying a<=b.
7, 9, 13, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27, 27, 28, 29, 30, 32, 33, 35, 35, 36, 39, 40, 40, 41, 42, 45, 45, 45, 46, 47, 48, 49, 52, 53, 54, 54, 55, 56, 58, 59, 60, 63, 63, 63, 64, 65, 69, 70, 70, 71, 72, 72, 75, 75, 77, 80, 80, 81, 81, 81, 82, 83, 84, 85, 87
Offset: 1
Keywords
Programs
-
Mathematica
z8 = 600; z9 = 150; z7 = 100; k = 5/3; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0] t[a_] := Table[d[a, b], {b, a, z8}] u[n_] := Delete[t[n], Position[t[n], 0]] Table[u[n], {n, 1, 15}] t = Table[u[n], {n, 1, z8}]; Flatten[Position[t, {}]] u = Flatten[Delete[t, Position[t, {}]]]; x[n_] := u[[3 n - 2]]; Table[x[n], {n, 1, z7}] (* A196088 *) y[n_] := u[[3 n - 1]]; Table[y[n], {n, 1, z7}] (* A196089 *) z[n_] := u[[3 n]]; Table[z[n], {n, 1, z7}] (* A196090 *) x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] f = Table[x1[n], {n, 1, z9}]; x2 = Delete[f, Position[f, 0]] (* A196091 *) g = Table[y1[n], {n, 1, z9}]; y2 = Delete[g, Position[g, 0]] (* A196092 *) h = Table[z1[n], {n, 1, z9}]; z2 = Delete[h, Position[h, 0]] (* A196093 *)
Comments