cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195770 Positive integer a is repeated m times, where m is the number of 1-Pythagorean triples (a,b,c) satisfying a<=b.

Original entry on oeis.org

3, 5, 6, 7, 7, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 17, 18, 18, 19, 19, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32, 32, 33, 33, 33, 33
Offset: 1

Views

Author

Clark Kimberling, Sep 25 2011

Keywords

Comments

In case the number k=-cos(C) is a rational number, the law of cosines, c^2=a^2+b^2+k*a*b, can be regarded as a Diophantine equation having positive integer solutions a,b,c satisfying a<=b. The terms "k-Pythagorean triple" and "primitive k-Pythagorean triple" generalize the classical terms corresponding to the case k=0.
Example: the first five (3/2)-Pythagorean triples are
(5,18,22),(6,11,16),(9,11,71),(10,36,44),(12,22,32);
the first five primitive (3/2)-Pythagorean triples are
(5,18,22),(6,11,16),(9,64,71),(13,138,148),(14,75,86).
...
If |k|>2, there is no triangle with sidelengths a,b,c satisfying c^2=a^2+b^2+k*a*b, but this equation is, nevertheless, a Diophantine equation for rational k.
...
Related sequences (k-Pythagorean triples):
k...(a(1),b(1),c(1))........a(n).....b(n).....c(n)
0.......(3,4,5).............A009004..A156681..A156682
1.......(3,5,7).............A195770..A195866..A195867
3.......(3,7,11)............A196112..A196113..A196114
4.......(3,8,13)............A196119..A196120..A196121
5.......(1,3,5).............A196155..A196156..A196157
6.......(2,3,7).............A196162..A196163..A196164
7.......(1,1,3).............A196169..A196170..A196171
8.......(1,4,7).............A196176..A196177..A196178
9.......(1,15,19)...........A196183..A196184..A196185
10......(1,2,5).............A196238..A196239..A196240
1/2.....(2,3,4).............A195879..A195880..A195881
3/2.....(5,18,22)...........A195925..A195926..A195927
1/3.....(3,8,9).............A195939..A195940..A195941
2/3.....(4,9,11)............A196001..A196002..A196003
4/3.....(7,36,41)...........A196040..A196041..A196042
5/3.....(7,39,45)...........A196088..A196089..A196090
5/2.....(5,22,28)...........A196026..A196027..A196028
1/4.....(2,2,3).............A196259..A196260..A196261
3/4.....(2,6,7).............A196252..A196253..A196254
5/4.....(3,20,22)...........A196098..A196099..A196100
7/4.....(9,68,76)...........A196105..A196106..A196107
1/5.....(5,7,9).............A196348..A196349..A196350
1/8.....(4,10,11)...........A196355..A196356..A196357
-1......(1,1,1).............A195778..A195794..A195795
-3......(1,3,1).............A196369..A196370..A196371
-4......(1,4,1).............A196376..A196377..A196378
-5......(1,5,1).............A196383..A196384..A196385
-6......(1,6,1).............A196390..A196391..A196392
-1/2....(1,2,2).............A195872..A195873..A195874
-3/2....(2,3,2).............A195918..A195919..A195920
-5/2....(2,5,2).............A196362..A196363..A196364
-1/3....(1,3,3).............A195932..A195933..A195934
-2/3....(2,3,3).............A195994..A195995..A195996
-4/3....(3,4,3).............A196033..A196034..A196035
-5/3....(3,5,3).............A196008..A196009..A196083
-1/4....(1,4,4).............A196266..A196267..A196268
-3/4....(3,4,4).............A196245..A196247..A196248
...
Related sequences (primitive k-Pythagorean triples):
k...(a(1),b(1),c(1))........a(n).....b(n).....c(n)
0.......(3,4,5).............A020884..A156678..A156679
1.......(3,5,7).............A195868..A195869..A195870
3.......(3,7,11)............A196115..A196116..A196117
4.......(3,8,13)............A196122..A196123..A196124
5.......(1,3,5).............A196158..A196159..A196160
6.......(2,3,7).............A196165..A196166..A196167
7.......(1,1,3).............A196172..A196173..A196174
8.......(1,4,7).............A196179..A196180..A196181
9.......(1,15,19)...........A196186..A196187..A196188
10......(1,2,5).............A196241..A196242..A196243
1/2.....(2,3,4).............A195882..A195883..A195884
3/2.....(5,18,22)...........A195928..A195929..A195930
1/3.....(3,8,9).............A195990..A195991..A195992
2/3.....(4,9,11)............A196004..A196005..A196006
4/3.....(7,36,41)...........A196043..A196044..A196045
5/3.....(7,39,45)...........A196091..A196092..A196093
5/2.....(5,22,28)...........A196029..A196030..A196031
1/4.....(2,2,3).............A196262..A196263..A196264
3/4.....(2,6,7).............A196255..A196256..A196257
5/4.....(3,20,22)...........A196101..A196102..A196103
7/4.....(9,68,76)...........A196108..A196109..A196110
1/5.....(5,7,9).............A196351..A196352..A196353
1/8.....(4,10,11)...........A196358..A196359..A196360
-1......(1,1,1).............A195796..A195862..A195863
-3......(1,3,1).............A196372..A196373..A196374
-4......(1,4,1).............A196379..A196380..A196381
-5......(1,5,1).............A196386..A196387..A196388
-6......(1,6,1).............A196393..A196394..A196395
-1/2....(1,2,2).............A195875..A195876..A195877
-3/2....(2,3,2).............A195921..A195922..A195923
-5/2....(2,5,2).............A196365..A196366..A196367
-1/3....(1,3,3).............A195935..A195936..A195937
-2/3....(2,3,3).............A195997..A195998..A195999
-4/3....(3,4,3).............A196036..A196037..A196038
-5/3....(3,5,3).............A196084..A196085..A196086
-1/4....(1,4,4).............A196269..A196270..A196271
-3/4....(3,4,4).............A196249..A196250..A196246
From Georg Fischer, Oct 26 2020: (Start)
The Mathematica program below has fixed limits (z7, z8, z9). Therefore, it misses higher values of b. For example, the following triples are do not show up in the corresponding sequences:
A196112 A196113 A196114 - non-primitive 3-Pythagorean
49: 29 1008 1051
A196241 A196242 A196243 - primitive 10-Pythagorean
31: 13 950 1013
This problem affects 62 of the 74 parameter combinations. (End)

Examples

			The first seven 1-Pythagorean triples (a,b,c), ordered as
described above, are as follows:
3,5,7........7^2 = 3^2 + 5^2 + 3*5
5,16,19.....19^2 = 5^2 + 16^2 + 5*16
6,10,14.....14^2 = 6^2 + 10^2 + 6*10
7,8,13
7,33,37
9,15,21
9,56,61
10,32,38
		

Crossrefs

Programs

  • Maple
    f:= proc(a) local F,r,u,b;
        r:= 3*a^2;
        nops(select(proc(t) local b; b:= (r/t - t - 2*a)/4;
    (t + r/t) mod 4 = 0 and b::integer and b >= a end proc, numtheory:-divisors(3*a^2)));
    end proc:
    seq(a$f(a),a=1..100); # Robert Israel, Jul 04 2024
  • Mathematica
    z8 = 2000; z9 = 400; z7 = 100;
    k = 1; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
    d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
    t[a_] := Table[d[a, b], {b, a, z8}]
    u[n_] := Delete[t[n], Position[t[n], 0]]
    Table[u[n], {n, 1, 15}]
    t = Table[u[n], {n, 1, z8}];
    Flatten[Position[t, {}]]
    u = Flatten[Delete[t, Position[t, {}]]];
    x[n_] := u[[3 n - 2]];
    Table[x[n], {n, 1, z7}]  (* this sequence *)
    y[n_] := u[[3 n - 1]];
    Table[y[n], {n, 1, z7}]  (* A195866 *)
    z[n_] := u[[3 n]];
    Table[z[n], {n, 1, z7}]  (* A195867 *)
    x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
    y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
    z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
    f = Table[x1[n], {n, 1, z9}];
    x2 = Delete[f, Position[f, 0]]  (* A195868 *)
    g = Table[y1[n], {n, 1, z9}];
    y2 = Delete[g, Position[g, 0]]  (* A195869 *)
    h = Table[z1[n], {n, 1, z9}];
    z2 = Delete[h, Position[h, 0]]  (* A195870 *)

Extensions

Name corrected by Robert Israel, Jul 04 2024

A196101 Positive integers a for which there is a primitive (5/4)-Pythagorean triple (a,b,c) satisfying a<=b.

Original entry on oeis.org

3, 4, 10, 11, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 35, 36, 37, 38, 42, 44, 47, 53, 54, 55, 57, 61, 63, 64, 64, 65, 68, 70, 71, 77, 82, 84, 85, 86, 91, 96, 98, 99, 100, 101, 109, 110, 116, 124, 125, 126, 128, 132, 138, 140, 145, 146, 156
Offset: 1

Views

Author

Clark Kimberling, Sep 28 2011

Keywords

Comments

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

Examples

			Primitive (5/4)-Pythagorean triples;
c^2=a^2+b^2+k*a*b, where k=5/4:
3,20,22
4,7,10
10,34,41
11,288,295
14,230,239
15,32,43
17,224,235
19,868,880
20,231,244
22,30,47
		

Crossrefs

Programs

A196103 Positive integers c for which there is a primitive (5/4)-Pythagorean triple (a,b,c) satisfying a<=b.

Original entry on oeis.org

22, 10, 41, 295, 239, 43, 235, 880, 244, 47, 100, 508, 275, 160, 55, 181, 157, 100, 64, 121, 790, 88, 137, 83, 394, 415, 178, 275, 568, 295, 235, 745, 211, 625, 142, 220, 461, 946, 373, 215, 334, 454, 695, 415, 355, 305, 205, 472, 640, 745, 593, 634
Offset: 1

Views

Author

Clark Kimberling, Sep 28 2011

Keywords

Comments

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

Crossrefs

Programs

A196099 Positive integers b for which there is a (5/4)-Pythagorean triple (a,b,c) satisfying a<=b.

Original entry on oeis.org

20, 7, 40, 14, 60, 34, 288, 21, 80, 230, 32, 100, 28, 224, 120, 868, 35, 68, 231, 140, 30, 576, 84, 42, 160, 492, 258, 180, 49, 141, 460, 32, 64, 102, 200, 160, 56, 135, 76, 220, 864, 448, 36, 96, 63, 240, 767, 60, 110, 260, 70, 136, 462, 50, 280, 690, 60
Offset: 1

Views

Author

Clark Kimberling, Sep 28 2011

Keywords

Comments

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

Crossrefs

Programs

Showing 1-4 of 4 results.