cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196111 Number of isomorphism classes of simple quandles of order n.

This page as a plain text file.
%I A196111 #41 Feb 13 2025 18:01:02
%S A196111 1,1,1,3,0,5,2,3,1,9,1,11,0,2,3,15,0,17,2,2,0,21,1,10,0,8,2,27,1,29,6,
%T A196111 0,0,0,3,35,0,0,2,39,3,41,0,3,0,45
%N A196111 Number of isomorphism classes of simple quandles of order n.
%C A196111 A quandle is simple if it has more than one element, and if it has no homomorphic images other than itself or the singleton quandle.  Since a simple quandle with more than two elements is connected, we have a(n) <= A181771(n), for n > 2, with equality if n is prime.
%C A196111 Some authors consider the quandle with one element to be simple and some do not.
%H A196111 W. E. Clark, M. Elhamdadi, M. Saito, and T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307, 2013
%H A196111 David Joyce, <a href="http://dx.doi.org/10.1016/0021-8693(82)90305-2">Simple Quandles</a>, J. Algebra 79(2) 1982, 307-318.
%H A196111 Leandro Vendramin, <a href="http://arxiv.org/abs/1105.5341">On the classification of quandles of low order</a>, arXiv:1105.5341v1 [math.GT].
%H A196111 Leandro Vendramin and Matías Graña, <a href="http://code.google.com/p/rig/">Rig, a GAP package for racks and quandles</a>.
%H A196111 Wikipedia, <a href="http://en.wikipedia.org/wiki/Racks_and_quandles">Racks and quandles</a>
%F A196111 a(p) = A181771(p) = p - 2, for prime p > 2.
%e A196111 a(2) = 1 since the quandle of order 2 is trivially simple (though not connected).
%o A196111 (GAP) # Using the Rig package.
%o A196111 LoadPackage("rig");
%o A196111 IsSimpleQuandle:=function(q)
%o A196111 local g,N,gg,n;
%o A196111 if IsFaithful(q) = false then return false; fi;
%o A196111 g:=InnerGroup(q);;
%o A196111 if Size(Center(g))>1 then return false; fi;
%o A196111 N:=NormalSubgroups(g);;
%o A196111 gg:=DerivedSubgroup(g);;
%o A196111 for n in N do
%o A196111   if Size(n) = 1 then continue; fi;
%o A196111   if IsSubset(gg,n) and Size(n)<Size(gg) then return false;  fi;
%o A196111 od;
%o A196111 return true;
%o A196111 end;;
%o A196111 a:=[1,1];;
%o A196111 for n in [3..35] do
%o A196111   a[n]:=0;
%o A196111   for i in [1..NrSmallQuandles(n)] do
%o A196111     if IsSimpleQuandle(SmallQuandle(n,i)) then
%o A196111       a[n]:=a[n]+1;
%o A196111     fi;
%o A196111   od;
%o A196111 od;
%o A196111 List([1..35],u->a[u]); # _W. Edwin Clark_, Dec 06 2011
%Y A196111 Cf. A181769, A181771.
%Y A196111 See also Index to OEIS under quandles.
%K A196111 nonn,hard,more
%O A196111 2,4
%A A196111 _James McCarron_, Oct 27 2011
%E A196111 a(21) corrected by _W. Edwin Clark_, Dec 06 2011
%E A196111 a(32)-a(35) added by _W. Edwin Clark_, Dec 06 2011
%E A196111 a(36)-a(47) added by _W. Edwin Clark_, Dec 28 2014