cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196141 Number of n X 3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,0,4,1,2 for x=0,1,2,3,4.

This page as a plain text file.
%I A196141 #11 Jan 21 2019 17:46:52
%S A196141 4,8,7,26,49,85,178,348,683,1349,2688,5319,10498,20818,41206,81574,
%T A196141 161646,320215,634294,1256481,2489029,4930656,9767642,19350237,
%U A196141 38333645,75940498,150441579,298031468,590414638,1169642000,2317123308,4590345948
%N A196141 Number of n X 3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,0,4,1,2 for x=0,1,2,3,4.
%C A196141 Every 0 is next to 0 3's, every 1 is next to 1 0's, every 2 is next to 2 4's, every 3 is next to 3 1's, every 4 is next to 4 2's.
%C A196141 Column 3 of A196146.
%H A196141 R. H. Hardin, <a href="/A196141/b196141.txt">Table of n, a(n) for n = 1..200</a>
%H A196141 Robert Israel, <a href="/A196141/a196141.pdf">Maple-assisted proof of empirical recurrence</a>
%F A196141 Empirical: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) -3*a(n-4) +3*a(n-5) -a(n-6) -7*a(n-8) +a(n-9) +4*a(n-10) +2*a(n-11) +6*a(n-12).
%F A196141 Empirical g.f.: x*(4 - 4*x - 9*x^2 + 17*x^3 - 11*x^4 - 5*x^5 - 4*x^6 + 14*x^8 + 4*x^9 + 12*x^10) / (1 - 3*x + 2*x^2 - x^3 + 3*x^4 - 3*x^5 + x^6 + 7*x^8 - x^9 - 4*x^10 - 2*x^11 - 6*x^12). - _Colin Barker_, May 08 2018
%F A196141 Empirical formulas verified: see link. - _Robert Israel_, Jan 21 2019
%e A196141 Some solutions for n=4:
%e A196141 .0.1.1...1.1.0...0.0.0...1.0.0...1.0.1...0.0.1...0.0.1
%e A196141 .1.1.0...0.1.1...1.1.1...3.1.1...1.0.1...0.0.1...1.1.1
%e A196141 .3.1.1...1.1.3...1.1.3...1.1.1...1.0.1...0.0.1...1.1.0
%e A196141 .1.0.1...1.0.1...0.0.1...0.0.0...1.0.1...0.0.1...0.1.1
%Y A196141 Cf. A196146.
%K A196141 nonn
%O A196141 1,1
%A A196141 _R. H. Hardin_, Sep 28 2011