This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196168 #49 Nov 04 2024 18:28:13 %S A196168 1,2,5,10,11,22,21,42,23,46,45,90,43,86,85,170,47,94,93,186,91,182, %T A196168 181,362,87,174,173,346,171,342,341,682,95,190,189,378,187,374,373, %U A196168 746,183,366,365,730,363,726,725,1450,175,350,349,698,347,694,693,1386 %N A196168 In binary representation of n: replace each 0 with 1, and each 1 with 10. %C A196168 All terms are numbers with no two adjacent zeros in binary representation, cf. A003754; %C A196168 a(odd) = even and a(even) = odd; %C A196168 A023416(a(n)) <= A000120(a(n)), equality iff n = 2^k - 1 for k > 0; %C A196168 A055010(n+1) = A196168(A000079(n)); %C A196168 A000120(a(n)) = A070939(n); %C A196168 A023416(a(n)) = A000120(n); %C A196168 A070939(a(n)) = A070939(n) + A000120(n). %H A196168 Reinhard Zumkeller, <a href="/A196168/b196168.txt">Table of n, a(n) for n = 0..10000</a> %H A196168 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A196168 n = Sum_{i=0..1} b(i)*2^i with 0 <= b(i) <= 1, L >= 0, then a(n) = h(0,L) with h(v,i) = if i > L then v, otherwise h((2*v+1)*(b(i)+1),i-1). %F A196168 From _Jeffrey Shallit_, Oct 28 2021: (Start) %F A196168 a(n) satisfies the recurrences: %F A196168 a(2n+1) = 2*a(2n) %F A196168 a(4n) = -2*a(n) + 3*a(2n) %F A196168 a(8n+2) = -8*a(n) + 8*a(2n) + a(4n+2) %F A196168 a(8n+6) = -4*a(2n) + 5*a(4n+2) %F A196168 which shows that a(n) is a 2-regular sequence. (End) %e A196168 n = 7 -> 111 -> 101010 -> a(7) = 42; %e A196168 n = 8 -> 1000 -> 10111 -> a(8) = 23; %e A196168 n = 9 -> 1001 -> 101110 -> a(9) = 46; %e A196168 n = 10 -> 1010 -> 101101 -> a(10) = 45; %e A196168 n = 11 -> 1011 -> 1011010 -> a(11) = 90; %e A196168 n = 12 -> 1100 -> 101011 -> a(12) = 43. %t A196168 Table[FromDigits[Flatten[IntegerDigits[n,2]/.{{0->1,1->{1,0}}}],2],{n,0,120}] (* _Harvey P. Dale_, Dec 12 2017 *) %o A196168 (Haskell) %o A196168 import Data.List (unfoldr) %o A196168 a196168 0 = 1 %o A196168 a196168 n = foldl (\v b -> (2 * v + 1)*(b + 1)) 0 $ reverse $ unfoldr %o A196168 (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) n %o A196168 where r v b = (2 * v + 1)*(b+1) %o A196168 (Python) %o A196168 def a(n): %o A196168 b = bin(n)[2:] %o A196168 return int(b.replace('1', 't').replace('0', '1').replace('t', '10'), 2) %o A196168 print([a(n) for n in range(56)]) # _Michael S. Branicky_, Oct 28 2021 %Y A196168 Cf. A179888, A005614. %K A196168 nonn %O A196168 0,2 %A A196168 _Reinhard Zumkeller_, Oct 28 2011