cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196176 Positive integers a for which there is an 8-Pythagorean triple (a,b,c) satisfying a<=b.

This page as a plain text file.
%I A196176 #11 Feb 10 2014 01:53:50
%S A196176 1,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,10,10,10,
%T A196176 11,11,11,11,11,12,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,15,15,
%U A196176 15,15,15,15,16,16,16,16,16,16,16,16,16,17,17,17,17,18,18,18,18
%N A196176 Positive integers a for which there is an 8-Pythagorean triple (a,b,c) satisfying a<=b.
%C A196176 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
%t A196176 z8 = 900; z9 = 250; z7 = 200;
%t A196176 k = 8; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
%t A196176 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
%t A196176 t[a_] := Table[d[a, b], {b, a, z8}]
%t A196176 u[n_] := Delete[t[n], Position[t[n], 0]]
%t A196176 Table[u[n], {n, 1, 15}]
%t A196176 t = Table[u[n], {n, 1, z8}];
%t A196176 Flatten[Position[t, {}]]
%t A196176 u = Flatten[Delete[t, Position[t, {}]]];
%t A196176 x[n_] := u[[3 n - 2]];
%t A196176 Table[x[n], {n, 1, z7}]  (* A196176 *)
%t A196176 y[n_] := u[[3 n - 1]];
%t A196176 Table[y[n], {n, 1, z7}]  (* A196177 *)
%t A196176 z[n_] := u[[3 n]];
%t A196176 Table[z[n], {n, 1, z7}]  (* A196178 *)
%t A196176 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
%t A196176 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
%t A196176 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
%t A196176 f = Table[x1[n], {n, 1, z9}];
%t A196176 x2 = Delete[f, Position[f, 0]]  (* A196179 *)
%t A196176 g = Table[y1[n], {n, 1, z9}];
%t A196176 y2 = Delete[g, Position[g, 0]]  (* A196180 *)
%t A196176 h = Table[z1[n], {n, 1, z9}];
%t A196176 z2 = Delete[h, Position[h, 0]]  (* A196181 *)
%Y A196176 Cf. A195770, A196165, A196177, A196178, A196179.
%K A196176 nonn
%O A196176 1,2
%A A196176 _Clark Kimberling_, Sep 29 2011