A196206 Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,3,4,1 for x=0,1,2,3,4.
5, 11, 14, 35, 70, 136, 305, 611, 1321, 2832, 6041, 12936, 27706, 59515, 128053, 275195, 591576, 1272021, 2736374, 5887462, 12665855, 27247361, 58620223, 126125420, 271372681, 583876552, 1256241214, 2702904009, 5815589949
Offset: 1
Keywords
Examples
Some solutions for n=5 ..1..1..0..0....1..1..0..1....0..0..0..0....0..1..1..0....0..0..1..1 ..0..1..1..1....0..1..1..1....0..0..0..0....1..1..1..0....1..1..1..0 ..1..1..1..1....1..4..1..0....0..0..0..0....1..0..1..1....1..1..4..1 ..1..0..0..0....1..1..1..0....0..0..0..0....1..1..4..1....0..0..1..1 ..1..0..0..0....0..0..1..1....0..0..0..0....0..1..1..0....1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 4*a(n-1) -6*a(n-2) +7*a(n-3) -5*a(n-4) -a(n-5) -a(n-6) -6*a(n-7) +12*a(n-8) -2*a(n-9) +18*a(n-10) -29*a(n-11) +12*a(n-12) -2*a(n-13) -4*a(n-14) +16*a(n-15) -9*a(n-16) +7*a(n-17) -4*a(n-18) -3*a(n-19)
Comments