cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196207 Number of nX5 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,3,4,1 for x=0,1,2,3,4.

This page as a plain text file.
%I A196207 #7 Jun 02 2025 04:18:39
%S A196207 8,18,17,70,135,301,751,1774,4243,10211,24823,60093,145378,351699,
%T A196207 855562,2076868,5030512,12211093,29679181,72051591,174807032,
%U A196207 424556639,1031502532,2504434609,6080193626,14768788766,35874049343,87112767731
%N A196207 Number of nX5 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,3,4,1 for x=0,1,2,3,4.
%C A196207 Every 0 is next to 0 2's, every 1 is next to 1 0's, every 2 is next to 2 3's, every 3 is next to 3 4's, every 4 is next to 4 1's
%C A196207 Column 5 of A196210
%H A196207 R. H. Hardin, <a href="/A196207/b196207.txt">Table of n, a(n) for n = 1..250</a>
%F A196207 Empirical: a(n) = 5*a(n-1) -8*a(n-2) +9*a(n-3) -12*a(n-4) -19*a(n-5) +49*a(n-6) +30*a(n-7) -58*a(n-8) -64*a(n-9) +48*a(n-10) +26*a(n-11) +140*a(n-12) -233*a(n-13) +158*a(n-14) -44*a(n-15) +183*a(n-16) -909*a(n-17) +641*a(n-18) +576*a(n-19) -625*a(n-20) +199*a(n-21) -562*a(n-22) +91*a(n-23) +37*a(n-24) +373*a(n-25) +87*a(n-26) -160*a(n-27) -200*a(n-28) +116*a(n-29) +59*a(n-30) +70*a(n-31) +95*a(n-32) -176*a(n-33) +143*a(n-34) -71*a(n-35) -33*a(n-36) +62*a(n-37) -60*a(n-38) +36*a(n-39) -8*a(n-40) for n>42
%e A196207 Some solutions for n=4
%e A196207 ..1..1..0..1..1....0..1..1..1..0....0..1..1..0..0....1..0..0..1..1
%e A196207 ..0..1..1..1..0....1..1..0..1..1....1..4..1..0..0....1..1..1..1..0
%e A196207 ..1..1..4..1..0....1..1..1..4..1....1..1..1..0..0....0..1..4..1..1
%e A196207 ..1..0..1..1..0....0..0..1..1..0....0..0..1..1..1....0..1..1..0..1
%K A196207 nonn
%O A196207 1,1
%A A196207 _R. H. Hardin_ Sep 29 2011