A196229 Smallest prime factor p of r = A067698(n) such that sigma(r/p)/((r/p)*log(log(r/p))) > sigma(r)/(r*log(log(r))), where sigma(k) = sum of divisors of k; or 1 if no such p.
1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 5, 3, 3, 2, 3, 5, 3, 7, 2, 5, 5, 5, 3, 7, 7, 2
Offset: 1
Keywords
Examples
A067698(5) = 6 and sigma(6/2)/((6/2)*log(log(6/2))) = 14.17... > 3.42... = sigma(6)/(6*log(log(6))), so a(5) = 2.
Links
- G. Caveney, J.-L. Nicolas, and J. Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, Integers 11 (2011), #A33; see Table 1 and Lemma 11.
- G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384.
Crossrefs
Cf. A067698.
Comments