A196294 Number of n X 2 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,0,1,4,2 for x=0,1,2,3,4.
3, 9, 20, 61, 187, 536, 1597, 4849, 14582, 44097, 134349, 409428, 1249517, 3822519, 11705002, 35866253, 109991817, 337493970, 1035913925, 3180693901, 9768462112, 30005758115, 92181317503, 283222651372, 870256732085, 2674196289015
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....1..0....1..2....1..0....0..0....2..1....0..1....1..0....0..1....1..0 ..2..1....1..0....0..1....1..0....0..0....1..0....0..2....2..0....0..2....2..1 ..1..1....1..1....0..1....1..0....0..0....1..1....2..1....1..0....0..1....2..1 ..0..0....0..1....1..2....2..1....1..1....0..1....1..0....1..0....1..2....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A196300.
Formula
Empirical: a(n) = 2*a(n-1) +4*a(n-2) +6*a(n-3) -9*a(n-4) -38*a(n-5) -32*a(n-6) -11*a(n-7) +6*a(n-8) +a(n-9).
Empirical g.f.: x*(1 + x)^2*(3 - 3*x - 7*x^2 - 16*x^3 - 3*x^4 + 15*x^5 + 2*x^6) / ((1 - x - 7*x^3 - x^4)*(1 - x - 5*x^2 - 4*x^3 - x^4 + x^5)). - Colin Barker, May 08 2018
Comments