cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196301 The number of ways to linearly order the cycles in each permutation of {1,2,...,n} where two cycles are considered identical if they have the same length.

This page as a plain text file.
%I A196301 #16 Apr 28 2017 09:16:00
%S A196301 1,1,2,9,44,270,2139,18837,186808,2070828,25861140,350000640,
%T A196301 5145279611,81492295079,1381583542234,25097285838765,484602684624080,
%U A196301 9894705390149400,213418984780492164,4842425874827849868,115231446547162291200,2874808892527026177240
%N A196301 The number of ways to linearly order the cycles in each permutation of {1,2,...,n} where two cycles are considered identical if they have the same length.
%H A196301 Alois P. Heinz, <a href="/A196301/b196301.txt">Table of n, a(n) for n = 0..444</a>
%e A196301 a(4) = 44 because in the conjugacy classes of S(4): (4), (3)(1), (2)(2), (2)(1)(1), (1)(1)(1)(1) there are (respectively) 6 permutations times 1 arrangement, 8 permutations times 2 arrangements, 3 permutations times 1 arrangement, 6 permutations times 3 arrangements, and 1 permutation times 1 arrangement.  So 6*1+8*2+3*1+6*3+1*1 = 44.
%p A196301 b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
%p A196301       (p+n)!/n!, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
%p A196301       [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i))
%p A196301     end:
%p A196301 a:= n-> b(n$2, 0):
%p A196301 seq(a(n), n=0..25);  # _Alois P. Heinz_, Apr 27 2017
%t A196301 Needs["Combinatorica`"]; f[{x_, y_}]:= x^y y!; Table[Total[Table[n!, {PartitionsP[n]}]/Apply[Times, Map[f, Map[Tally, Partitions[n]], {2}], 2] * Apply[Multinomial, Map[Last, Map[Tally, Partitions[n]], {2}], 2]], {n, 0, 20}]
%Y A196301 Cf. A120774.
%Y A196301 Row sums of A285849.
%K A196301 nonn
%O A196301 0,3
%A A196301 _Geoffrey Critzer_, Sep 30 2011