This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196348 #8 Mar 30 2012 18:57:49 %S A196348 5,5,7,8,9,9,10,10,11,14,15,15,15,15,16,16,16,17,17,18,18,19,20,20,21, %T A196348 21,22,24,24,25,25,25,25,25,25,27,28,29,30,30,30,30,31,31,32,32,32,33, %U A196348 34,35,35,35,35,35,36,37,38,39,39,40,40,40,40,40,41,42,42,44 %N A196348 Positive integers a for which there is a (1/5)-Pythagorean triple (a,b,c) satisfying a<=b. %C A196348 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences. %t A196348 z8 = 900; z9 = 250; z7 = 200; %t A196348 k = 1/5; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; %t A196348 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0] %t A196348 t[a_] := Table[d[a, b], {b, a, z8}] %t A196348 u[n_] := Delete[t[n], Position[t[n], 0]] %t A196348 Table[u[n], {n, 1, 15}] %t A196348 t = Table[u[n], {n, 1, z8}]; %t A196348 Flatten[Position[t, {}]] %t A196348 u = Flatten[Delete[t, Position[t, {}]]]; %t A196348 x[n_] := u[[3 n - 2]]; %t A196348 Table[x[n], {n, 1, z7}] (* A196348 *) %t A196348 y[n_] := u[[3 n - 1]]; %t A196348 Table[y[n], {n, 1, z7}] (* A196349 *) %t A196348 z[n_] := u[[3 n]]; %t A196348 Table[z[n], {n, 1, z7}] (* A196350 *) %t A196348 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] %t A196348 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] %t A196348 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] %t A196348 f = Table[x1[n], {n, 1, z9}]; %t A196348 x2 = Delete[f, Position[f, 0]] (* A196351 *) %t A196348 g = Table[y1[n], {n, 1, z9}]; %t A196348 y2 = Delete[g, Position[g, 0]] (* A196352 *) %t A196348 h = Table[z1[n], {n, 1, z9}]; %t A196348 z2 = Delete[h, Position[h, 0]] (* A196353 *) %Y A196348 Cf. A195770, A196351. %K A196348 nonn %O A196348 1,1 %A A196348 _Clark Kimberling_, Oct 01 2011