cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196348 Positive integers a for which there is a (1/5)-Pythagorean triple (a,b,c) satisfying a<=b.

This page as a plain text file.
%I A196348 #8 Mar 30 2012 18:57:49
%S A196348 5,5,7,8,9,9,10,10,11,14,15,15,15,15,16,16,16,17,17,18,18,19,20,20,21,
%T A196348 21,22,24,24,25,25,25,25,25,25,27,28,29,30,30,30,30,31,31,32,32,32,33,
%U A196348 34,35,35,35,35,35,36,37,38,39,39,40,40,40,40,40,41,42,42,44
%N A196348 Positive integers a for which there is a (1/5)-Pythagorean triple (a,b,c) satisfying a<=b.
%C A196348 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
%t A196348 z8 = 900; z9 = 250; z7 = 200;
%t A196348 k = 1/5; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
%t A196348 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
%t A196348 t[a_] := Table[d[a, b], {b, a, z8}]
%t A196348 u[n_] := Delete[t[n], Position[t[n], 0]]
%t A196348 Table[u[n], {n, 1, 15}]
%t A196348 t = Table[u[n], {n, 1, z8}];
%t A196348 Flatten[Position[t, {}]]
%t A196348 u = Flatten[Delete[t, Position[t, {}]]];
%t A196348 x[n_] := u[[3 n - 2]];
%t A196348 Table[x[n], {n, 1, z7}]  (* A196348 *)
%t A196348 y[n_] := u[[3 n - 1]];
%t A196348 Table[y[n], {n, 1, z7}]  (* A196349 *)
%t A196348 z[n_] := u[[3 n]];
%t A196348 Table[z[n], {n, 1, z7}]  (* A196350 *)
%t A196348 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
%t A196348 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
%t A196348 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
%t A196348 f = Table[x1[n], {n, 1, z9}];
%t A196348 x2 = Delete[f, Position[f, 0]]  (* A196351 *)
%t A196348 g = Table[y1[n], {n, 1, z9}];
%t A196348 y2 = Delete[g, Position[g, 0]]  (* A196352 *)
%t A196348 h = Table[z1[n], {n, 1, z9}];
%t A196348 z2 = Delete[h, Position[h, 0]]  (* A196353 *)
%Y A196348 Cf. A195770, A196351.
%K A196348 nonn
%O A196348 1,1
%A A196348 _Clark Kimberling_, Oct 01 2011