A196389 Triangle T(n,k), read by rows, given by (0,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 0, 2, 1; 0, 0, 0, 3, 1; 0, 0, 0, 0, 4, 1; 0, 0, 0, 0, 0, 5, 1; 0, 0, 0, 0, 0, 0, 6, 1; 0, 0, 0, 0, 0, 0, 0, 7, 1; 0, 0, 0, 0, 0, 0, 0, 0, 8, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1; ...
Crossrefs
Cf. A084938.
Formula
T(n,n)=1, T(n+1,n)=n.
G.f.: (1-x*y+x^2*y)/(1-x*y)^2. - Philippe Deléham, Oct 31 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A028310(n), A057711(n+1), A064017(n+1) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 31 2011
Comments