A196431 Number of n X 3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,1,0,3,4 for x=0,1,2,3,4.
3, 9, 25, 75, 213, 621, 1801, 5219, 15133, 43867, 127195, 368759, 1069105, 3099583, 8986391, 26053581, 75535111, 218993223, 634910491, 1840747761, 5336740123, 15472405305, 44857970049, 130053306249, 377053674603, 1093163086545
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0....1..1..0....1..1..0....0..1..1....0..1..0....1..1..0....0..0..0 ..0..0..0....0..0..1....0..0..0....1..0..0....0..1..0....0..0..0....0..1..1 ..1..0..0....0..0..1....0..0..1....1..0..1....1..0..1....1..0..1....0..0..0 ..1..0..0....0..0..0....0..0..1....0..0..1....1..0..1....1..0..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A196436.
Formula
Empirical: a(n) = a(n-1) + 3*a(n-2) + 5*a(n-3) + 6*a(n-4) + 4*a(n-5) - 5*a(n-6) - 5*a(n-7) - a(n-8) + a(n-9).
Empirical g.f.: x*(1 + x)*(3 + 3*x + 4*x^2 + 4*x^3 - 4*x^4 - 4*x^5 - x^6 + x^7) / (1 - x - 3*x^2 - 5*x^3 - 6*x^4 - 4*x^5 + 5*x^6 + 5*x^7 + x^8 - x^9). - Colin Barker, Mar 01 2018
Comments