This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196500 #10 Feb 11 2025 13:32:48 %S A196500 3,6,4,4,7,0,3,6,8,5,9,1,0,4,0,5,3,8,0,0,4,4,0,0,2,1,4,6,3,7,8,1,6,0, %T A196500 8,4,9,1,2,4,1,0,3,6,4,1,3,0,3,0,2,5,8,1,7,2,1,0,1,5,4,1,0,7,7,8,0,5, %U A196500 3,6,0,0,5,4,7,1,6,8,2,3,2,2,3,8,5,7,5,3,1,0,4,5,2,4,5,1,7,1,6,2,8,9,9,9 %N A196500 Decimal expansion of the greatest x satisfying x=1/x+cot(1/x). %C A196500 Let B be the greatest x satisfying x=1/x+cot(1/x), so that B=0.364... Then %C A196500 ... %C A196500 cot(1/x) < x < 1/x+cot(1/x) for all x > B; equivalently, %C A196500 ... %C A196500 cot(x) < 1/x < x+cot(x) for 0 < x < 1/B = 2.7437.... %C A196500 ... %C A196500 These inequalities and those at A196503 supplement the trigonometric inequalities given in Bullen's dictionary cited below. %D A196500 P. S. Bullen, A Dictionary of Inequalities, Longman, 1998, pages 250-251. %H A196500 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196500 B=0.364470368591040538004400214637816084912410... %e A196500 1/B=2.7437072699922693825611220811203071372042... %t A196500 Plot[{Cot[1/x], x, 1/x + Cot[1/x]}, {x, 0.34, 1.0}] %t A196500 t = x /.FindRoot[1/x + Cot[1/x] == x, {x, .3, .4}, WorkingPrecision -> 100] %t A196500 RealDigits[t] (* A196500 *) %t A196500 1/t %t A196500 RealDigits[%] (* A196501 *) %Y A196500 Cf. A196501, A196502, A196504. %K A196500 nonn,cons %O A196500 0,1 %A A196500 _Clark Kimberling_, Oct 03 2011