This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196505 #7 Mar 30 2012 18:57:50 %S A196505 4,9,2,9,1,2,4,5,1,7,5,4,9,0,7,5,7,4,1,8,7,7,8,0,1,8,9,8,2,2,2,3,2,9, %T A196505 7,6,9,1,5,6,9,7,0,1,3,2,5,7,1,1,5,0,0,7,0,2,5,9,2,6,5,3,6,0,0,4,0,4, %U A196505 4,9,2,5,9,1,0,6,8,6,4,1,8,3,4,8,9,2,0,2,5,0,0,7,1,0,6,4,7,4,5,9 %N A196505 Decimal expansion of greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2). %C A196505 Let M be the greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2). Then sin(1/x) > 1/sqrt(1+x^2) for all x>M=0.4929... See A196500-A196504 for related constants and inequalities. %e A196505 x=0.4929124517549075741877801898222329769156970132... %t A196505 Plot[{Sin[x], x/Sqrt[1 + x^2]}, {x, 0, 9}] %t A196505 Plot[{Sin[1/x], 1/Sqrt[1 + x^2]}, {x, 0.1, 1.0}] (for A196505) %t A196505 t = x /.FindRoot[Sin[x] == x/Sqrt[1 + x^2], {x, .10, 3}, WorkingPrecision -> 100] %t A196505 RealDigits[t] (* A196504 *) %t A196505 1/t %t A196505 RealDigits[1/t] (* A196505 *) %Y A196505 Cf. A196500, A196502, A196503. %K A196505 nonn,cons %O A196505 0,1 %A A196505 _Clark Kimberling_, Oct 03 2011