cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196505 Decimal expansion of greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2).

This page as a plain text file.
%I A196505 #7 Mar 30 2012 18:57:50
%S A196505 4,9,2,9,1,2,4,5,1,7,5,4,9,0,7,5,7,4,1,8,7,7,8,0,1,8,9,8,2,2,2,3,2,9,
%T A196505 7,6,9,1,5,6,9,7,0,1,3,2,5,7,1,1,5,0,0,7,0,2,5,9,2,6,5,3,6,0,0,4,0,4,
%U A196505 4,9,2,5,9,1,0,6,8,6,4,1,8,3,4,8,9,2,0,2,5,0,0,7,1,0,6,4,7,4,5,9
%N A196505 Decimal expansion of greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2).
%C A196505 Let M be the greatest x>0 satisfying sin(1/x)=1/sqrt(1+x^2). Then sin(1/x) > 1/sqrt(1+x^2) for all x>M=0.4929...  See A196500-A196504 for related constants and inequalities.
%e A196505 x=0.4929124517549075741877801898222329769156970132...
%t A196505 Plot[{Sin[x], x/Sqrt[1 + x^2]}, {x, 0, 9}]
%t A196505 Plot[{Sin[1/x], 1/Sqrt[1 + x^2]}, {x, 0.1, 1.0}] (for A196505)
%t A196505 t = x /.FindRoot[Sin[x] == x/Sqrt[1 + x^2], {x, .10, 3}, WorkingPrecision -> 100]
%t A196505 RealDigits[t]   (* A196504 *)
%t A196505 1/t
%t A196505 RealDigits[1/t] (* A196505 *)
%Y A196505 Cf. A196500, A196502, A196503.
%K A196505 nonn,cons
%O A196505 0,1
%A A196505 _Clark Kimberling_, Oct 03 2011