This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196510 #30 Jan 16 2022 15:46:22 %S A196510 6643,4,10,26,28,8,121,10,121,244,13,28,1210,16,68,784,1733,20,1604, %T A196510 242,23,2096,100,26,937,28,203,3280,1952,160,1249,68,280,1366,14483, %U A196510 608,11293,40,82,5948,7102,484,2069,644,1222,4372,784,100,6452,52 %N A196510 Smallest number greater than n that is palindromic in base 3 and base n. %H A196510 Zak Seidov, <a href="/A196510/b196510.txt">Table of n, a(n) for n = 2..1000</a> %H A196510 Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0699.html">Problem of the month June 1999</a> %p A196510 ispal := proc(n,b) %p A196510 dgs := convert(n,base,b) ; %p A196510 for i from 1 to nops(dgs)/2 do %p A196510 if op(i,dgs) <> op(-i,dgs) then %p A196510 return false; %p A196510 end if; %p A196510 end do; %p A196510 return true; %p A196510 end proc: %p A196510 A196510 := proc(n) %p A196510 for k from n+1 do %p A196510 if ispal(k,n) and ispal(k,3) then %p A196510 return k; %p A196510 end if; %p A196510 end do: %p A196510 end proc: %p A196510 seq(A196510(n),n=2..30) ; # _R. J. Mathar_, Oct 13 2011 %t A196510 pal3n[n_]:=Module[{k=n+1},While[IntegerDigits[k,3]!=Reverse[ IntegerDigits[ k,3]] || IntegerDigits[ k,n]!= Reverse[ IntegerDigits[k,n]],k++];k]; Array[ pal3n,60,2] (* _Harvey P. Dale_, Jan 16 2022 *) %o A196510 (Sage) %o A196510 def A196510(n): %o A196510 is_palindrome = lambda x,b=10: x.digits(b) == (x.digits(b))[::-1] %o A196510 return next(k for k in IntegerRange(n+1, infinity) if is_palindrome(k,n) and is_palindrome(k,3)) %o A196510 # _D. S. McNeil_, Oct 03 2011 %Y A196510 Cf. A056749. %K A196510 nonn,base %O A196510 2,1 %A A196510 _Kausthub Gudipati_, Oct 03 2011