This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196516 #13 May 14 2019 23:40:40 %S A196516 1,0,4,9,9,0,8,8,9,4,9,6,4,0,3,9,9,5,9,9,8,8,6,9,7,0,7,0,5,5,2,8,9,7, %T A196516 9,0,4,5,8,9,4,6,6,9,4,3,7,0,6,3,4,1,4,5,2,9,3,2,8,7,1,5,8,3,3,1,6,6, %U A196516 4,9,0,5,0,4,4,4,4,4,2,9,5,7,8,8,5,6,7,8,6,6,6,8,2,2,4,3,4,6,7,4 %N A196516 Decimal expansion of the number x satisfying x*e^x=3. %H A196516 G. C. Greubel, <a href="/A196516/b196516.txt">Table of n, a(n) for n = 1..5000</a> %H A196516 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A196516 1.049908894964039959988697070552897904589... %t A196516 Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] %t A196516 t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196516 RealDigits[t] (* A030175 *) %t A196516 t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196516 RealDigits[t] (* A196515 *) %t A196516 t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196516 RealDigits[t] (* A196516 *) %t A196516 t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196516 RealDigits[t] (* A196517 *) %t A196516 t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196516 RealDigits[t] (* A196518 *) %t A196516 t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196516 RealDigits[t] (* A196519 *) %t A196516 RealDigits[LambertW[3], 10, 50][[1]] (* _G. C. Greubel-, Nov 16 2017 *) %o A196516 (PARI) lambertw(3) \\ _G. C. Greubel_, Nov 16 2017 %K A196516 nonn,cons %O A196516 1,3 %A A196516 _Clark Kimberling_, Oct 03 2011