This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196518 #13 May 14 2019 23:41:25 %S A196518 1,3,2,6,7,2,4,6,6,5,2,4,2,2,0,0,2,2,3,6,3,5,0,9,9,2,9,7,7,5,8,0,7,9, %T A196518 6,6,0,1,2,8,7,9,3,5,5,4,6,3,8,0,4,7,4,7,9,7,8,9,2,9,0,3,9,3,0,2,5,3, %U A196518 4,2,6,7,9,9,2,0,5,3,6,2,2,6,7,7,4,4,6,9,9,1,6,6,0,8,4,2,6,7,8,9 %N A196518 Decimal expansion of the number x satisfying x*e^x=5. %H A196518 G. C. Greubel, <a href="/A196518/b196518.txt">Table of n, a(n) for n = 1..5000</a> %H A196518 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A196518 1.32672466524220022363509929775807966012... %t A196518 Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] %t A196518 t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196518 RealDigits[t] (* A030175 *) %t A196518 t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196518 RealDigits[t] (* A196515 *) %t A196518 t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196518 RealDigits[t] (* A196516 *) %t A196518 t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196518 RealDigits[t] (* A196517 *) %t A196518 t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196518 RealDigits[t] (* A196518 *) %t A196518 t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196518 RealDigits[t] (* A196519 *) %t A196518 RealDigits[LambertW[5], 10, 50][[1]] (* _G. C. Greubel_, Nov 16 2017 *) %o A196518 (PARI) lambertw(5) \\ _G. C. Greubel_, Nov 16 2017 %K A196518 nonn,cons %O A196518 1,2 %A A196518 _Clark Kimberling_, Oct 03 2011