cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196524 a(n) = phi(n)*tau(n^2).

Original entry on oeis.org

1, 3, 6, 10, 12, 18, 18, 28, 30, 36, 30, 60, 36, 54, 72, 72, 48, 90, 54, 120, 108, 90, 66, 168, 100, 108, 126, 180, 84, 216, 90, 176, 180, 144, 216, 300, 108, 162, 216, 336, 120, 324, 126, 300, 360, 198, 138, 432, 210, 300, 288, 360, 156, 378, 360, 504, 324, 252, 174, 720, 180, 270, 540, 416, 432, 540
Offset: 1

Views

Author

R. J. Mathar, Oct 07 2011

Keywords

Programs

  • Mathematica
    Table[EulerPhi[n] DivisorSigma[0, n^2], {n, 70}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (2*e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=numdiv(n^2)*eulerphi(n) \\ Charles R Greathouse IV, Dec 07 2011

Formula

Multiplicative with a(p^e) = (2e+1)*(p-1)*p^(e-1), e>0.
a(n) = A048691(n)*A000010(n).
Dirichlet g.f.: zeta^3(s-1)*product_{primes p} (1-3/p^s -1/p^(2s-2) +4/p^(2s-1) -1/p^(3s-2)) = zeta^2(s-1)*product_{primes p} (1 +p^(1-s) +p^(1-2s) -3p^(-s)).
Sum_{k=1..n} a(k) ~ c * log(n)^2 * n^2 / 4, where c = A256392 = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.217778716619536378323007514119446813130797755... - Vaclav Kotesovec, Dec 18 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^s - 1/p^(2*s-2) + 4/p^(2*s-1) - 1/p^(3*s-2)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)^2/4 + (3*gamma/2 - 1/4)*log(n) + 3*gamma^2/2 - 3*gamma/4 - 3*sg1/2 + 1/8)*f(2) + (log(n)/2 + 3*gamma/2 - 1/4)*f'(2) + f''(2)/4), where f(2) = A256392, f'(2) = f(2) * Sum_{primes p} (5*p - 3) * log(p) / (p^3 + p^2 - 3*p + 1) = 0.44156369228425957720874599661015191553108775903124..., f''(2) = f'(2)^2/f(2) + f(2) * Sum_{primes p} = p*(7*p^3 - 2*p^2 - 5*p + 4) * log(p)^2 / (p^3 + p^2 - 3*p + 1)^2 = -0.0925787956842332743072787717877016487612772912975..., gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 18 2020