This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196527 #10 Jul 29 2017 10:02:23 %S A196527 2,5,2,1,1,1,1,1,2,1,4,1,7,1,8,1,1,1,1,1,8,7,1,1,1,3,2,1,4,3,1,1,28,1, %T A196527 1,1,1,1,2,1,1,3,1,1,2,1,1,1,26,1,2,1,1,1,2,1,6,1,1,1,2,1,1,1,1,1,2,1, %U A196527 1,1,4,1,1,1,1,1,10,1,2,1,1,1,1,3,8 %N A196527 Greatest common divisor of sums of first n prime numbers and first n composite numbers. %C A196527 a(n) = gcd(A007504(n),A053767(n)); %C A196527 a(A196528(n)) = n and a(m) <> n for m < A196528(n). %H A196527 Reinhard Zumkeller, <a href="/A196527/b196527.txt">Table of n, a(n) for n = 1..10000</a> %e A196527 a(1) = gcd(2,4) = 2; %e A196527 a(2) = gcd(2+3,4+6) = gcd(5,10) = 5; %e A196527 a(3) = gcd(2+3+5,4+6+8) = gcd(10,18) = 2; %e A196527 a(4) = gcd(2+3+5+7,4+6+8+9) = gcd(17,19) = 1. %t A196527 Module[{nn=90,pr,cmp},pr=Accumulate[Prime[Range[nn]]];cmp=Accumulate[ Take[Select[Range[2nn],CompositeQ],nn]];GCD@@#&/@Thread[{pr,cmp}]] (* _Harvey P. Dale_, Jul 29 2017 *) %Y A196527 Cf. A196529. %K A196527 nonn %O A196527 1,1 %A A196527 _Reinhard Zumkeller_, Oct 03 2011