This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196530 #43 Jun 11 2024 10:56:31 %S A196530 7,6,0,3,4,5,9,9,6,3,0,0,9,4,6,3,4,7,5,3,1,0,9,4,2,5,4,8,8,0,4,0,5,8, %T A196530 2,4,2,0,1,6,2,7,7,3,0,9,4,7,1,7,6,4,2,7,0,2,0,5,7,0,6,7,0,2,6,0,0,5, %U A196530 5,1,2,2,6,5,4,9,1,0,7,5,3,0,2,8,4,5,8,3,6 %N A196530 Decimal expansion of log(2+sqrt(3))/sqrt(3). %C A196530 Equals the value of the Dirichlet L-series of a non-principal character modulo 12 (A110161) at s=1. %D A196530 L. B. W. Jolley, Summation of series, Dover (1961), eq. (83), page 16. %H A196530 Vincenzo Librandi, <a href="/A196530/b196530.txt">Table of n, a(n) for n = 0..10000</a> %H A196530 Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017. %H A196530 E. D. Krupnikov, K. S. Kolbig, <a href="https://dx.doi.org/10.1016/S0377-0427(96)00111-2">Some special cases of the generalized hypergeometric function (q+1)Fq</a>, J. Comp. Appl. Math. 78 (1997) 79-95 %H A196530 R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, Table in section 2.2, L(m=12,r=4,s=1). %H A196530 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A196530 Equals A065918/A002194. %F A196530 Equals Sum_{n>=1} A110161(n)/n. %F A196530 Equals Sum_{k>=1} (-1)^(k+1)*2^k/(k * binomial(2*k,k)). - _Amiram Eldar_, Aug 19 2020 %F A196530 Equals 1/Product_{p prime} (1 - Kronecker(12,p)/p), where Kronecker(12,p) = 0 if p = 2 or 3, 1 if p == 1 or 11 (mod 12) or -1 if p == 5 or 7 (mod 12). - _Amiram Eldar_, Dec 17 2023 %F A196530 Equals A259830 - 2. - _Hugo Pfoertner_, Apr 06 2024 %F A196530 Equals (1/2)*2F1(1/2,1;3/2;3/4) [Krupnikov] - _R. J. Mathar_, Jun 11 2024 %e A196530 0.7603459963009463475310942548... %t A196530 RealDigits[Log[2 + Sqrt[3]]/Sqrt[3], 10, 89][[1]] (* _Bruno Berselli_, Dec 20 2011 *) %o A196530 (PARI) log(sqrt(3)+2)/sqrt(3) \\ _Charles R Greathouse IV_, May 15 2019 %Y A196530 Cf. A065918, A002194, A110161. %K A196530 nonn,cons,easy %O A196530 0,1 %A A196530 _R. J. Mathar_, Oct 03 2011