cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196535 Decimal expansion of Sum_{j=0..oo} exp(-Pi*(2*j+1)^2).

Original entry on oeis.org

0, 4, 3, 2, 1, 3, 9, 1, 8, 2, 6, 4, 2, 9, 7, 7, 9, 8, 2, 9, 2, 0, 1, 8, 3, 8, 2, 0, 2, 7, 2, 5, 0, 3, 4, 1, 8, 4, 2, 0, 6, 0, 4, 4, 7, 7, 1, 2, 9, 3, 7, 4, 6, 3, 1, 2, 5, 2, 7, 3, 4, 4, 6, 1, 7, 8, 9, 8, 7, 1, 8, 0, 7, 2, 3, 7, 7, 5, 1, 7, 0, 4, 9, 9, 3, 1, 8, 1, 5, 8, 7, 8, 2, 5, 2, 4, 9, 0, 6, 2, 8, 4, 7, 1, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.04321391826429779829201838202725...
		

References

  • Jolley, Summation of Series, Dover (1961) eq (114) on page 22.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 729, formula 14.

Crossrefs

Programs

  • Maple
    (root[4](2)-1)*GAMMA(1/4)/2^(11/4)/Pi^(3/4) ; evalf(%) ;
  • Mathematica
    RealDigits[ EllipticTheta[2, 0, Exp[-4*Pi]]/2, 10, 105] // First // Prepend[#, 0]&  (* Jean-François Alcover, Feb 12 2013 *)

Formula

Equals (2^(1/4)-1) * Gamma(1/4) / ( 2^(11/4) * Pi^(3/4) ).
Equals theta2(exp(-4*Pi))/2.

Extensions

12 more digits from Jean-François Alcover, Feb 12 2013