This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196550 #8 Feb 27 2013 02:54:36 %S A196550 1,2,5,6,0,5,8,6,5,9,3,9,1,7,4,5,2,3,8,0,2,4,1,6,7,4,6,2,3,4,2,1,3,3, %T A196550 7,1,1,1,1,3,3,3,7,0,2,0,0,8,9,6,5,5,8,6,4,3,5,6,3,0,0,6,3,5,6,5,9,0, %U A196550 4,7,5,1,6,1,5,9,4,3,5,6,2,7,3,1,8,1,8,3,0,3,8,3,7,6,4,6,6,6,4,2 %N A196550 Decimal expansion of the number x satisfying x*2^x=3. %e A196550 x=1.25605865939174523802416746234213371111333... %t A196550 Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] %t A196550 t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196550 RealDigits[t] (* A104748 *) %t A196550 t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196550 RealDigits[t] (* A196549 *) %t A196550 t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196550 RealDigits[t] (* A196550 *) %t A196550 t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196550 RealDigits[t] (* A196551 *) %t A196550 t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196550 RealDigits[t] (* A196552 *) %t A196550 t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196550 RealDigits[t] (* A196553 *) %t A196550 RealDigits[ ProductLog[ Log[8] ] / Log[2], 10, 100] // First (* _Jean-François Alcover_, Feb 27 2013 *) %K A196550 nonn,cons %O A196550 1,2 %A A196550 _Clark Kimberling_, Oct 03 2011