This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196551 #8 Feb 27 2013 02:54:28 %S A196551 1,4,5,6,9,9,9,5,5,9,1,3,4,5,9,1,8,2,6,2,5,3,2,2,3,0,2,5,6,9,4,2,5,5, %T A196551 4,0,8,6,4,9,8,5,9,7,2,5,5,8,1,9,9,6,4,3,4,9,8,1,1,3,5,9,6,7,4,0,4,5, %U A196551 5,9,4,7,0,1,8,8,1,5,9,0,6,9,7,5,2,4,0,6,0,3,9,2,7,6,8,6,8,8,0,0 %N A196551 Decimal expansion of the number x satisfying x*2^x=4. %e A196551 x=1.4569995591345918262532230256942554086498597255... %t A196551 Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] %t A196551 t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196551 RealDigits[t] (* A104748 *) %t A196551 t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196551 RealDigits[t] (* A196549 *) %t A196551 t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196551 RealDigits[t] (* A196550 *) %t A196551 t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196551 RealDigits[t] (* A196551 *) %t A196551 t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196551 RealDigits[t] (* A196552 *) %t A196551 t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196551 RealDigits[t] (* A196553 *) %t A196551 RealDigits[ ProductLog[ Log[16] ] / Log[2], 10, 100] // First (* _Jean-François Alcover_, Feb 27 2013 *) %K A196551 nonn,cons %O A196551 1,2 %A A196551 _Clark Kimberling_, Oct 03 2011