This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196552 #8 Feb 27 2013 02:54:13 %S A196552 1,6,2,3,1,4,0,3,4,5,9,6,9,0,3,6,6,7,0,9,4,2,3,3,4,4,0,4,1,6,1,9,6,5, %T A196552 6,3,4,8,2,6,2,9,8,7,3,7,7,9,7,9,5,9,9,3,4,7,2,4,5,5,4,6,8,2,8,7,8,3, %U A196552 9,6,5,8,6,6,7,2,5,3,9,2,5,9,4,5,7,4,2,6,7,3,7,4,6,7,9,5,5,9,0,8 %N A196552 Decimal expansion of the number x satisfying x*2^x=5. %e A196552 x=1.62314034596903667094233440416196563482629873... %t A196552 Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] %t A196552 t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196552 RealDigits[t] (* A104748 *) %t A196552 t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196552 RealDigits[t] (* A196549 *) %t A196552 t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196552 RealDigits[t] (* A196550 *) %t A196552 t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196552 RealDigits[t] (* A196551 *) %t A196552 t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196552 RealDigits[t] (* A196552 *) %t A196552 t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196552 RealDigits[t] (* A196553 *) %t A196552 RealDigits[ ProductLog[ Log[32] ] / Log[2], 10, 100] // First (* _Jean-François Alcover_, Feb 27 2013 *) %K A196552 nonn,cons %O A196552 1,2 %A A196552 _Clark Kimberling_, Oct 03 2011