This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196553 #8 Feb 27 2013 03:29:02 %S A196553 1,7,6,5,1,6,1,9,4,8,2,5,6,6,9,9,1,3,7,1,8,5,0,5,5,7,0,3,2,8,6,4,6,5, %T A196553 2,8,1,8,0,0,7,3,5,6,2,0,0,3,2,7,1,8,7,7,2,9,5,0,5,5,9,5,9,2,4,8,4,5, %U A196553 8,3,8,5,4,9,4,0,9,3,1,5,1,5,4,5,2,2,3,3,3,8,3,4,8,3,0,1,6,8,6,6 %N A196553 Decimal expansion of the number x satisfying x*2^x=6. %e A196553 x=1.765161948256699137185055703286465281800... %t A196553 Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}] %t A196553 t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196553 RealDigits[t] (* A104748 *) %t A196553 t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100] %t A196553 RealDigits[t] (* A196549 *) %t A196553 t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196553 RealDigits[t] (* A196550 *) %t A196553 t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196553 RealDigits[t] (* A196551 *) %t A196553 t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196553 RealDigits[t] (* A196552 *) %t A196553 t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100] %t A196553 RealDigits[t] (* A196553 *) %t A196553 RealDigits[ ProductLog[ 6*Log[2] ] / Log[2], 10, 100] // First (* _Jean-François Alcover_, Feb 27 2013 *) %K A196553 nonn,cons %O A196553 1,2 %A A196553 _Clark Kimberling_, Oct 03 2011 %E A196553 Digits from a(94) on corrected by _Jean-François Alcover_, Feb 27 2013