This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196563 #43 Feb 16 2025 01:01:54 %S A196563 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,2,1,2,1,2,1,2,1,2,1,1,0,1,0, %T A196563 1,0,1,0,1,0,2,1,2,1,2,1,2,1,2,1,1,0,1,0,1,0,1,0,1,0,2,1,2,1,2,1,2,1, %U A196563 2,1,1,0,1,0,1,0,1,0,1,0,2,1,2,1,2,1 %N A196563 Number of even digits in decimal representation of n. %H A196563 Reinhard Zumkeller, <a href="/A196563/b196563.txt">Table of n, a(n) for n = 0..10000</a> %H A196563 Zachary P. Bradshaw and Christophe Vignat, <a href="https://arxiv.org/abs/2307.05565">Dubious Identities: A Visit to the Borwein Zoo</a>, arXiv:2307.05565 [math.HO], 2023. %F A196563 a(n) = A055642(n) - A196564(n); %F A196563 a(A014261(n)) = 0; a(A007928(n)) > 0. %F A196563 From _Hieronymus Fischer_, May 30 2012: (Start) %F A196563 a(n) = Sum_{j=0..m} (1 + floor(n/(2*10^j)) - floor(n/(2*10^j) + (1/2))), where m=floor(log_10(n)). %F A196563 a(10*n+k) = a(n) + a(k), 0<=k<10, n>=1. %F A196563 a(n) = a(floor(n/10))+a(n mod 10), n>=10. %F A196563 a(n) = Sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0. %F A196563 a(A014263(n)) = 1 + floor(log_5(n-1)), n>1. %F A196563 G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} x^(2*10^j)/(1+x^10^j). (End) %p A196563 A196563 := proc(n) %p A196563 if n =0 then %p A196563 1; %p A196563 else %p A196563 convert(n,base,10) ; %p A196563 add(1-(d mod 2),d=%) ; %p A196563 end if: %p A196563 end proc: # _R. J. Mathar_, Jul 13 2012 %t A196563 Table[Count[Mod[IntegerDigits[n],2],0][n],{n,0,100}] (* _Zak Seidov_, Oct 13 2015 *) %t A196563 Table[Count[IntegerDigits[n],_?EvenQ],{n,0,120}] (* _Harvey P. Dale_, Feb 22 2020 *) %o A196563 (Haskell) %o A196563 a196563 n = length [d | d <- show n, d `elem` "02468"] %o A196563 -- _Reinhard Zumkeller_, Feb 22 2012, Oct 04 2011 %o A196563 (PARI) a(n) = #select(x->(!(x%2)), if (n, digits(n), [0])); \\ _Michel Marcus_, Oct 14 2015 %o A196563 (Python) %o A196563 def a(n): return sum(1 for d in str(n) if d in "02468") %o A196563 print([a(n) for n in range(100)]) # _Michael S. Branicky_, May 15 2022 %Y A196563 Cf. A014261, A014263, A027868, A046034, A055640, A055641, A055642, A061217, A102669-A102685, A122640, A196564. %K A196563 nonn,base,easy %O A196563 0,21 %A A196563 _Reinhard Zumkeller_, Oct 04 2011