This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196564 #52 Feb 16 2025 01:02:16 %S A196564 0,1,0,1,0,1,0,1,0,1,1,2,1,2,1,2,1,2,1,2,0,1,0,1,0,1,0,1,0,1,1,2,1,2, %T A196564 1,2,1,2,1,2,0,1,0,1,0,1,0,1,0,1,1,2,1,2,1,2,1,2,1,2,0,1,0,1,0,1,0,1, %U A196564 0,1,1,2,1,2,1,2,1,2,1,2,0,1,0,1,0,1 %N A196564 Number of odd digits in decimal representation of n. %H A196564 Reinhard Zumkeller, <a href="/A196564/b196564.txt">Table of n, a(n) for n = 0..10000</a> %H A196564 Zachary P. Bradshaw and Christophe Vignat, <a href="https://arxiv.org/abs/2307.05565">Dubious Identities: A Visit to the Borwein Zoo</a>, arXiv:2307.05565 [math.HO], 2023. %F A196564 a(n) = A055642(n) - A196563(n); %F A196564 a(A014263(n)) = 0; a(A007957(n)) > 0. %F A196564 From _Hieronymus Fischer_, May 30 2012: (Start) %F A196564 a(n) = Sum_{j=0..m} (floor(n/(2*10^j) + (1/2)) - floor(n/(2*10^j))), where m=floor(log_10(n)). %F A196564 a(10*n+k) = a(n) + a(k), 0<=k<10, n>=0. %F A196564 a(n) = a(floor(n/10)) + a(n mod 10), n>=0. %F A196564 a(n) = Sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0. %F A196564 a(A014261(n)) = floor(log_5(4*n+1)), n>0. %F A196564 G.f.: g(x) = (1/(1-x))*Sum_{j>=0} x^10^j/(1+x^10^j). (End) %p A196564 A196564 := proc(n) %p A196564 if n =0 then %p A196564 0; %p A196564 else %p A196564 convert(n,base,10) ; %p A196564 add(d mod 2,d=%) ; %p A196564 end if: %p A196564 end proc: # _R. J. Mathar_, Jul 13 2012 %t A196564 Table[Total[Mod[IntegerDigits[n],2]],{n,0,100}] (* _Zak Seidov_, Oct 13 2015 *) %o A196564 (Haskell) %o A196564 a196564 n = length [d | d <- show n, d `elem` "13579"] %o A196564 -- _Reinhard Zumkeller_, Feb 22 2012, Oct 04 2011 %o A196564 (PARI) a(n) = #select(x->x%2, digits(n)); \\ _Michel Marcus_, Oct 14 2015 %o A196564 (Python) %o A196564 def a(n): return sum(1 for d in str(n) if d in "13579") %o A196564 print([a(n) for n in range(100)]) # _Michael S. Branicky_, May 15 2022 %Y A196564 Cf. A014261, A014263, A027868, A046034, A055640, A055641, A055642, A061217, A102669-A102685, A122640, A196563. %K A196564 nonn,easy,base %O A196564 0,12 %A A196564 _Reinhard Zumkeller_, Oct 04 2011