cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196602 Decimal expansion of the least x>0 satisfying 1=x*cos(3*x).

This page as a plain text file.
%I A196602 #6 Mar 30 2012 18:57:50
%S A196602 1,7,7,0,8,2,3,2,3,7,2,1,8,8,5,5,8,9,9,1,2,2,0,5,2,6,6,6,0,8,4,8,0,1,
%T A196602 0,6,0,3,9,7,2,3,1,3,7,4,3,0,6,9,2,7,8,5,0,8,0,4,1,8,7,4,2,7,9,4,9,6,
%U A196602 8,8,4,9,0,1,8,2,3,4,3,0,7,8,8,1,4,2,9,4,3,2,8,2,9,0,8,8,4,4,1,7
%N A196602 Decimal expansion of the least x>0 satisfying 1=x*cos(3*x).
%e A196602 x=1.770823237218855899122052666084801060397231374306...
%t A196602 Plot[{1/x, Cos[x], Cos[2 x], Cos[3 x], Cos[4 x]}, {x, 0, 2 Pi}]
%t A196602 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196602 RealDigits[t]  (* A133868 *)
%t A196602 t = x /. FindRoot[1/x == Cos[2 x], {x, 2, 3}, WorkingPrecision -> 100]
%t A196602 RealDigits[t]  (* A196608 *)
%t A196602 t = x /. FindRoot[1/x == Cos[3 x], {x, 1, 2}, WorkingPrecision -> 100]
%t A196602 RealDigits[t]  (* A196602 *)
%t A196602 t = x /. FindRoot[1/x == Cos[4 x], {x, .9, 1.4}, WorkingPrecision -> 100]
%t A196602 RealDigits[t]  (* A196609 *)
%t A196602 t = x /. FindRoot[1/x == Cos[5 x], {x, .9, 1.2}, WorkingPrecision -> 100]
%t A196602 RealDigits[t]  (* A196626 *)
%K A196602 nonn,cons
%O A196602 1,2
%A A196602 _Clark Kimberling_, Oct 05 2011