This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196603 #8 Feb 07 2025 12:58:21 %S A196603 6,1,0,0,3,1,2,8,4,4,6,4,1,7,5,9,7,5,3,7,0,9,6,3,0,7,3,5,1,3,4,1,0,3, %T A196603 2,4,6,7,3,7,2,0,9,7,9,1,1,2,1,6,9,2,3,7,8,6,3,7,5,1,6,0,7,5,3,2,8,0, %U A196603 9,4,8,8,6,1,0,5,1,0,6,8,8,7,8,1,4,2,4,4,1,6,0,3,4,4,4,4,1,2,4,4 %N A196603 Decimal expansion of the least x>0 satisfying sec(x)=2x. %H A196603 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196603 0.61003128446417597537096307351341032... %t A196603 Plot[{1/x, Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] %t A196603 t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] %t A196603 RealDigits[t] (* A133868 *) %t A196603 t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] %t A196603 RealDigits[t] (* A196603 *) %t A196603 t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] %t A196603 RealDigits[t] (* A196604 *) %t A196603 t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] %t A196603 RealDigits[t] (* A196605 *) %t A196603 t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] %t A196603 RealDigits[t] (* A196606 *) %t A196603 t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] %t A196603 RealDigits[t] (* A196607 *) %Y A196603 Cf. A196610. %K A196603 nonn,cons %O A196603 0,1 %A A196603 _Clark Kimberling_, Oct 04 2011