This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196604 #9 Feb 07 2025 12:59:21 %S A196604 3,5,5,5,7,5,9,8,9,3,4,2,9,7,3,3,7,2,6,2,5,6,5,3,1,0,8,5,6,5,7,7,5,9, %T A196604 4,8,9,7,8,5,5,2,1,8,5,7,5,8,9,9,3,9,3,4,5,5,1,7,0,1,2,6,5,8,7,6,7,3, %U A196604 7,1,2,4,6,6,5,8,8,8,1,7,6,0,4,7,7,3,4,1,0,3,8,8,9,1,9,0,8,1,7,0 %N A196604 Decimal expansion of the least x>0 satisfying sec(x)=3x. %H A196604 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196604 0.3555759893429733726256531085657759489... %t A196604 Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] %t A196604 t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] %t A196604 RealDigits[t] (* A133868 *) %t A196604 t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] %t A196604 RealDigits[t] (* A196603 *) %t A196604 t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] %t A196604 RealDigits[t] (* A196604 *) %t A196604 t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] %t A196604 RealDigits[t] (* A196605 *) %t A196604 t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] %t A196604 RealDigits[t] (* A196606 *) %t A196604 t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] %t A196604 RealDigits[t] (* A196607 *) %K A196604 nonn,cons %O A196604 0,1 %A A196604 _Clark Kimberling_, Oct 04 2011