This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196605 #9 Feb 07 2025 12:59:18 %S A196605 2,5,8,5,9,8,5,8,2,2,5,4,1,8,9,4,9,0,3,0,4,4,8,2,6,1,9,5,6,1,5,2,0,2, %T A196605 8,1,3,3,8,5,5,2,9,6,5,3,1,6,8,2,5,7,5,3,4,3,8,8,1,7,2,8,7,4,3,7,7,4, %U A196605 1,3,3,0,4,9,3,9,2,6,1,8,4,4,6,4,5,3,3,9,0,5,0,8,1,5,9,4,0,9,0,4 %N A196605 Decimal expansion of the least x>0 satisfying sec(x)=4x. %H A196605 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196605 0.25859858225418949030448261956152028133855... %t A196605 Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] %t A196605 t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] %t A196605 RealDigits[t] (* A133868 *) %t A196605 t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] %t A196605 RealDigits[t] (* A196603 *) %t A196605 t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] %t A196605 RealDigits[t] (* A196604 *) %t A196605 t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] %t A196605 RealDigits[t] (* A196605 *) %t A196605 t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] %t A196605 RealDigits[t] (* A196606 *) %t A196605 t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] %t A196605 RealDigits[t] (* A196607 *) %Y A196605 Cf. A295255. %K A196605 nonn,cons %O A196605 0,1 %A A196605 _Clark Kimberling_, Oct 04 2011