cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196606 Decimal expansion of the least x>0 satisfying sec(x)=5x.

This page as a plain text file.
%I A196606 #9 Feb 07 2025 12:59:14
%S A196606 2,0,4,2,4,5,3,7,8,7,0,4,5,3,8,9,0,1,7,2,3,4,5,9,0,5,7,0,5,5,2,8,0,9,
%T A196606 7,7,3,4,4,5,7,3,1,1,3,0,6,3,5,9,6,9,1,1,2,8,0,3,7,9,7,1,8,5,8,3,3,0,
%U A196606 7,9,1,4,4,2,3,6,4,3,1,1,5,3,1,5,5,7,7,4,2,6,7,8,2,1,7,0,8,0,1,5,5
%N A196606 Decimal expansion of the least x>0 satisfying sec(x)=5x.
%H A196606 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A196606 0.2042453787045389017234590570552809773445731130635969...
%t A196606 Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
%t A196606 t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
%t A196606 RealDigits[t]  (* A133868 *)
%t A196606 t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
%t A196606 RealDigits[t]  (* A196603 *)
%t A196606 t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
%t A196606 RealDigits[t]  (* A196604 *)
%t A196606 t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
%t A196606 RealDigits[t]  (* A196605 *)
%t A196606 t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
%t A196606 RealDigits[t]  (* A196606 *)
%t A196606 t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
%t A196606 RealDigits[t]  (* A196607 *)
%K A196606 nonn,cons
%O A196606 0,1
%A A196606 _Clark Kimberling_, Oct 04 2011