This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196606 #9 Feb 07 2025 12:59:14 %S A196606 2,0,4,2,4,5,3,7,8,7,0,4,5,3,8,9,0,1,7,2,3,4,5,9,0,5,7,0,5,5,2,8,0,9, %T A196606 7,7,3,4,4,5,7,3,1,1,3,0,6,3,5,9,6,9,1,1,2,8,0,3,7,9,7,1,8,5,8,3,3,0, %U A196606 7,9,1,4,4,2,3,6,4,3,1,1,5,3,1,5,5,7,7,4,2,6,7,8,2,1,7,0,8,0,1,5,5 %N A196606 Decimal expansion of the least x>0 satisfying sec(x)=5x. %H A196606 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196606 0.2042453787045389017234590570552809773445731130635969... %t A196606 Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] %t A196606 t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] %t A196606 RealDigits[t] (* A133868 *) %t A196606 t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] %t A196606 RealDigits[t] (* A196603 *) %t A196606 t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] %t A196606 RealDigits[t] (* A196604 *) %t A196606 t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] %t A196606 RealDigits[t] (* A196605 *) %t A196606 t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] %t A196606 RealDigits[t] (* A196606 *) %t A196606 t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] %t A196606 RealDigits[t] (* A196607 *) %K A196606 nonn,cons %O A196606 0,1 %A A196606 _Clark Kimberling_, Oct 04 2011