This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196607 #9 Feb 07 2025 12:59:15 %S A196607 1,6,9,0,7,7,6,4,7,3,9,8,0,1,5,1,4,9,9,9,5,2,9,5,3,6,7,6,7,2,6,2,7,8, %T A196607 1,0,7,4,2,1,3,4,0,7,6,9,6,9,6,5,3,7,1,7,0,5,6,2,1,0,6,7,7,0,2,8,1,3, %U A196607 5,0,2,5,7,5,8,9,1,6,8,6,1,8,9,9,4,5,5,6,8,0,9,5,5,1,1,9,4,7,8,0 %N A196607 Decimal expansion of the least x>0 satisfying sec(x)=6x. %H A196607 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196607 0.169077647398015149995295367672627810742134076969653717056... %t A196607 Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] %t A196607 t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] %t A196607 RealDigits[t] (* A133868 *) %t A196607 t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] %t A196607 RealDigits[t] (* A196603 *) %t A196607 t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] %t A196607 RealDigits[t] (* A196604 *) %t A196607 t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] %t A196607 RealDigits[t] (* A196605 *) %t A196607 t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] %t A196607 RealDigits[t] (* A196606 *) %t A196607 t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] %t A196607 RealDigits[t] (* A196607 *) %o A196607 (PARI) solve(x=0,1,6*x*cos(x)-1) \\ _Charles R Greathouse IV_, Aug 23 2021 %K A196607 nonn,cons %O A196607 0,2 %A A196607 _Clark Kimberling_, Oct 04 2011