This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196612 #9 Feb 22 2025 20:12:56 %S A196612 5,1,1,4,1,8,2,1,8,7,8,5,5,8,1,5,8,7,4,9,1,9,7,7,5,5,4,8,9,2,6,8,0,0, %T A196612 7,7,3,5,0,5,6,3,6,1,9,9,8,1,4,4,3,8,7,6,0,0,4,6,6,2,1,8,7,5,9,2,6,8, %U A196612 6,5,7,6,6,0,3,4,2,7,2,0,0,9,7,7,5,6,4,3,8,5,9,1,9,9,5,0,9,7,9,6,7 %N A196612 Decimal expansion of the least x>0 satisfying 2*sec(x)=x. %H A196612 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196612 5.11418218785581587491977554892680077350563... %t A196612 Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] %t A196612 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196612 RealDigits[t] (* A133868 *) %t A196612 t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196612 RealDigits[t] (* A196612 *) %t A196612 t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196612 RealDigits[t] (* A196613 *) %t A196612 t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196612 RealDigits[t] (* A196614 *) %t A196612 t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196612 RealDigits[t] (* A196615 *) %t A196612 t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196612 RealDigits[t] (* A196616 *) %Y A196612 Cf. A196604. %K A196612 nonn,cons %O A196612 1,1 %A A196612 _Clark Kimberling_, Oct 04 2011