This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196613 #7 Aug 09 2021 14:03:53 %S A196613 5,3,1,2,4,6,9,7,1,1,6,5,6,5,6,7,6,9,7,3,6,6,1,5,7,9,9,8,2,5,4,4,0,3, %T A196613 1,8,1,1,9,1,6,9,4,1,2,2,9,2,0,7,8,3,5,5,2,4,1,2,5,6,2,2,8,3,8,4,9,0, %U A196613 6,5,4,7,0,5,4,7,0,2,9,2,3,6,4,4,2,8,8,2,9,8,4,8,7,2,6,5,3,2,5,2,9 %N A196613 Decimal expansion of the least x>0 satisfying 3*sec(x)=x. %e A196613 x=5.31246971165656769736615799825440318119169412292... %t A196613 Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] %t A196613 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196613 RealDigits[t] (* A133868 *) %t A196613 t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196613 RealDigits[t] (* A196612 *) %t A196613 t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196613 RealDigits[t] (* A196613 *) %t A196613 t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196613 RealDigits[t] (* A196614 *) %t A196613 t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196613 RealDigits[t] (* A196615 *) %t A196613 t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196613 RealDigits[t] (* A196616 *) %K A196613 nonn,cons %O A196613 1,1 %A A196613 _Clark Kimberling_, Oct 05 2011