cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196614 Decimal expansion of the least x>0 satisfying 4*sec(x)=x.

This page as a plain text file.
%I A196614 #5 Mar 30 2012 18:57:50
%S A196614 5,5,2,2,4,3,4,1,0,2,5,9,1,0,2,6,9,1,6,5,1,2,7,9,3,4,7,7,1,8,0,2,2,6,
%T A196614 4,6,1,8,3,5,3,4,4,1,0,2,2,5,1,4,9,7,9,9,3,3,7,2,2,7,1,2,5,1,6,3,5,2,
%U A196614 4,7,7,6,4,8,3,6,4,6,0,7,0,4,5,2,7,3,5,1,7,5,4,1,6,2,1,1,0,1,9,4
%N A196614 Decimal expansion of the least x>0 satisfying 4*sec(x)=x.
%e A196614 x=5.5224341025910269165127934771802264618...
%t A196614 Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
%t A196614 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196614 RealDigits[t]  (* A133868 *)
%t A196614 t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196614 RealDigits[t]  (* A196612 *)
%t A196614 t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196614 RealDigits[t]  (* A196613 *)
%t A196614 t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196614 RealDigits[t]  (* A196614 *)
%t A196614 t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196614 RealDigits[t]    (* A196615 *)
%t A196614 t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
%t A196614 RealDigits[t]   (* A196616 *)
%K A196614 nonn,cons
%O A196614 1,1
%A A196614 _Clark Kimberling_, Oct 05 2011