This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196614 #5 Mar 30 2012 18:57:50 %S A196614 5,5,2,2,4,3,4,1,0,2,5,9,1,0,2,6,9,1,6,5,1,2,7,9,3,4,7,7,1,8,0,2,2,6, %T A196614 4,6,1,8,3,5,3,4,4,1,0,2,2,5,1,4,9,7,9,9,3,3,7,2,2,7,1,2,5,1,6,3,5,2, %U A196614 4,7,7,6,4,8,3,6,4,6,0,7,0,4,5,2,7,3,5,1,7,5,4,1,6,2,1,1,0,1,9,4 %N A196614 Decimal expansion of the least x>0 satisfying 4*sec(x)=x. %e A196614 x=5.5224341025910269165127934771802264618... %t A196614 Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] %t A196614 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196614 RealDigits[t] (* A133868 *) %t A196614 t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196614 RealDigits[t] (* A196612 *) %t A196614 t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196614 RealDigits[t] (* A196613 *) %t A196614 t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196614 RealDigits[t] (* A196614 *) %t A196614 t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196614 RealDigits[t] (* A196615 *) %t A196614 t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196614 RealDigits[t] (* A196616 *) %K A196614 nonn,cons %O A196614 1,1 %A A196614 _Clark Kimberling_, Oct 05 2011