This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196615 #7 Aug 09 2021 14:04:21 %S A196615 5,7,6,2,8,0,9,4,5,6,0,9,0,9,8,8,0,3,3,0,0,7,3,0,0,1,5,2,9,9,9,9,5,3, %T A196615 3,5,6,6,7,6,8,1,9,6,8,0,7,1,2,0,5,6,6,6,8,0,8,3,2,4,9,4,4,8,5,3,2,7, %U A196615 4,1,9,7,7,9,1,4,0,1,0,3,8,1,8,6,7,5,1,3,9,0,3,4,8,4,4,7,2,6,9,2,6,9,7,8,9 %N A196615 Decimal expansion of the least x>0 satisfying 5*sec(x)=x. %e A196615 x=5.762809456090988033007300152999953356676... %t A196615 Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] %t A196615 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196615 RealDigits[t] (* A133868 *) %t A196615 t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196615 RealDigits[t] (* A196612 *) %t A196615 t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196615 RealDigits[t] (* A196613 *) %t A196615 t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196615 RealDigits[t] (* A196614 *) %t A196615 t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196615 RealDigits[t] (* A196615 *) %t A196615 t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196615 RealDigits[t] (* A196616 *) %K A196615 nonn,cons %O A196615 1,1 %A A196615 _Clark Kimberling_, Oct 05 2011