This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196616 #7 Aug 09 2021 14:04:45 %S A196616 6,7,6,2,6,9,7,9,4,4,6,8,2,5,4,4,5,0,0,9,9,7,9,3,6,0,1,4,4,6,0,8,1,0, %T A196616 9,4,9,1,7,6,5,8,8,3,1,7,6,0,2,4,4,0,0,5,2,4,0,6,2,0,6,8,3,3,1,6,6,5, %U A196616 6,4,5,4,2,8,3,8,2,8,2,5,4,2,7,9,8,1,4,2,7,3,6,3,0,7,4,2,3,1,4,9,6 %N A196616 Decimal expansion of the least x>0 satisfying 6*sec(x)=x. %e A196616 x=6.7626979446825445009979360144608109491765883176... %t A196616 Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}] %t A196616 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196616 RealDigits[t] (* A133868 *) %t A196616 t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196616 RealDigits[t] (* A196612 *) %t A196616 t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196616 RealDigits[t] (* A196613 *) %t A196616 t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196616 RealDigits[t] (* A196614 *) %t A196616 t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196616 RealDigits[t] (* A196615 *) %t A196616 t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196616 RealDigits[t] (* A196616 *) %K A196616 nonn,cons %O A196616 1,1 %A A196616 _Clark Kimberling_, Oct 05 2011