This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196621 #8 Apr 10 2021 08:05:09 %S A196621 1,0,0,1,0,6,5,0,4,8,3,2,5,5,4,6,0,2,8,4,7,1,3,0,7,2,9,0,3,0,5,4,0,3, %T A196621 4,8,4,5,6,7,7,6,1,4,1,8,7,4,9,0,5,3,6,4,4,3,8,3,1,9,1,4,0,8,4,2,3,9, %U A196621 0,6,9,5,4,3,0,4,9,0,1,7,8,3,6,4,0,6,5,0,7,9,7,8,4,4,4,4,6,2,9,5 %N A196621 Decimal expansion of the least x > 0 satisfying 1 = x*cos(x - Pi/3). %e A196621 x=1.0010650483255460284713072903054034845677614187490536443... %t A196621 Plot[{1/x, Cos[x], Cos[x - Pi/2], Cos[x - Pi/3], Cos[x - Pi/4]}, {x, %t A196621 0, 2 Pi}] %t A196621 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196621 RealDigits[t] (* A133868 *) %t A196621 t = x /. FindRoot[1/x == Cos[x - Pi/2], {x, .9, 1.3}, WorkingPrecision -> 100] %t A196621 RealDigits[t] (* A133866 *) %t A196621 t = x /. FindRoot[1/x == Cos[x - Pi/3], {x, .9, 1.3}, WorkingPrecision -> 100] %t A196621 RealDigits[t] (* A196621 *) %t A196621 t = x /. FindRoot[1/x == Cos[x - Pi/4], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196621 RealDigits[t] (* A196622 *) %t A196621 t = x /. FindRoot[1/x == Cos[x - Pi/5], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196621 RealDigits[t] (* A196623 *) %Y A196621 Cf. A196625. %K A196621 nonn,cons %O A196621 1,6 %A A196621 _Clark Kimberling_, Oct 05 2011