This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196622 #8 Apr 10 2021 08:05:16 %S A196622 1,0,3,0,9,1,5,3,4,8,5,3,5,1,1,3,4,1,1,8,6,4,3,8,4,0,1,8,3,5,3,4,3,5, %T A196622 6,6,2,0,9,0,6,1,6,9,3,2,9,4,0,1,9,2,2,2,3,3,8,0,6,0,2,3,3,5,7,8,9,8, %U A196622 4,3,2,8,3,3,5,2,1,8,0,1,6,0,6,0,2,6,9,9,4,1,7,0,3,6,1,6,7,7,6,9 %N A196622 Decimal expansion of the least x > 0 satisfying 1 = x*cos(x - Pi/4). %e A196622 x=1.03091534853511341186438401835343566209061693... %t A196622 Plot[{1/x, Cos[x], Cos[x - Pi/2], Cos[x - Pi/3], Cos[x - Pi/4]}, {x, %t A196622 0, 2 Pi}] %t A196622 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196622 RealDigits[t] (* A133868 *) %t A196622 t = x /. FindRoot[1/x == Cos[x - Pi/2], {x, .9, 1.3}, WorkingPrecision -> 100] %t A196622 RealDigits[t] (* A133866 *) %t A196622 t = x /. FindRoot[1/x == Cos[x - Pi/3], {x, .9, 1.3}, WorkingPrecision -> 100] %t A196622 RealDigits[t] (* A196621 *) %t A196622 t = x /. FindRoot[1/x == Cos[x - Pi/4], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196622 RealDigits[t] (* A196622 *) %t A196622 t = x /. FindRoot[1/x == Cos[x - Pi/5], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196622 RealDigits[t] (* A196623 *) %K A196622 nonn,cons %O A196622 1,3 %A A196622 _Clark Kimberling_, Oct 05 2011