This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196623 #9 Apr 10 2021 02:00:43 %S A196623 1,1,6,0,4,8,0,1,4,3,6,8,7,5,8,7,0,6,7,1,4,6,4,0,5,8,5,9,9,4,5,6,3,5, %T A196623 8,8,9,1,7,5,4,9,9,3,4,7,3,5,9,5,0,5,2,4,5,3,1,5,9,7,3,0,6,6,0,7,9,7, %U A196623 2,5,4,5,8,3,6,2,2,8,5,9,7,1,3,9,7,9,5,8,0,9,9,4,8,1,6,6,5,9,5,6 %N A196623 Decimal expansion of the least x > 0 satisfying 1 = x*cos(x - Pi/5). %e A196623 x=1.1604801436875870671464058599456358891754993473595... %t A196623 Plot[{1/x, Cos[x], Cos[x - Pi/2], Cos[x - Pi/3], Cos[x - Pi/4]}, {x, %t A196623 0, 2 Pi}] %t A196623 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196623 RealDigits[t] (* A133868 *) %t A196623 t = x /. FindRoot[1/x == Cos[x - Pi/2], {x, .9, 1.3}, WorkingPrecision -> 100] %t A196623 RealDigits[t] (* A133866 *) %t A196623 t = x /. FindRoot[1/x == Cos[x - Pi/3], {x, .9, 1.3}, WorkingPrecision -> 100] %t A196623 RealDigits[t] (* A196621 *) %t A196623 t = x /. FindRoot[1/x == Cos[x - Pi/4], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196623 RealDigits[t] (* A196622 *) %t A196623 t = x /. FindRoot[1/x == Cos[x - Pi/5], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196623 RealDigits[t] (* A196623 *) %K A196623 nonn,cons %O A196623 1,3 %A A196623 _Clark Kimberling_, Oct 05 2011