This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196624 #7 Feb 11 2025 13:33:11 %S A196624 7,4,0,8,4,0,9,5,5,0,9,5,4,9,0,6,2,1,0,1,0,9,3,5,4,0,9,9,4,3,1,3,0,1, %T A196624 3,7,1,9,8,6,5,2,7,9,3,5,5,9,3,2,1,5,7,6,3,2,4,2,7,0,4,8,1,9,5,1,7,6, %U A196624 6,5,7,5,3,5,1,4,8,4,5,3,8,6,3,3,0,4,6,4,4,2,6,5,1,1,1,3,2,1,6,1 %N A196624 Decimal expansion of the least x>0 satisfying 1=2x*sin(x). %H A196624 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A196624 0.7408409550954906210109354099431301371986... %t A196624 Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}] %t A196624 t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196624 RealDigits[t] (* A133866 *) %t A196624 t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196624 RealDigits[t] (* A196624 *) %t A196624 t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196624 RealDigits[t] (* A196754 *) %t A196624 t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196624 RealDigits[t] (* A196755 *) %t A196624 t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196624 RealDigits[t] (* A196756 *) %t A196624 t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100] %t A196624 RealDigits[t] (* A196757 *) %Y A196624 Cf. A196758 %K A196624 nonn,cons %O A196624 0,1 %A A196624 _Clark Kimberling_, Oct 06 2011