This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196626 #5 Mar 30 2012 18:57:50 %S A196626 1,1,5,2,5,6,1,8,9,1,2,1,8,1,9,7,6,0,6,6,0,1,4,6,0,0,3,0,5,9,9,9,9,0, %T A196626 6,7,1,3,3,5,3,6,3,9,3,6,1,4,2,4,1,1,3,3,3,6,1,6,6,4,9,8,8,9,7,0,6,5, %U A196626 4,8,3,9,5,5,8,2,8,0,2,0,7,6,3,7,3,5,0,2,7,8,0,6,9,6,8,9,4,5,3,8 %N A196626 Decimal expansion of the least x>0 satisfying 1=x*cos(5*x). %e A196626 x=1.152561891218197606601460030599990... %t A196626 Plot[{1/x, Cos[x], Cos[2 x], Cos[3 x], Cos[4 x]}, {x, 0, 2 Pi}] %t A196626 t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] %t A196626 RealDigits[t] (* A133868 *) %t A196626 t = x /. FindRoot[1/x == Cos[2 x], {x, 2, 3}, WorkingPrecision -> 100] %t A196626 RealDigits[t] (* A196608 *) %t A196626 t = x /. FindRoot[1/x == Cos[3 x], {x, 1, 2}, WorkingPrecision -> 100] %t A196626 RealDigits[t] (* A196602 *) %t A196626 t = x /. FindRoot[1/x == Cos[4 x], {x, .9, 1.4}, WorkingPrecision -> 100] %t A196626 RealDigits[t] (* A196609 *) %t A196626 t = x /. FindRoot[1/x == Cos[5 x], {x, .9, 1.2}, WorkingPrecision -> 100] %t A196626 RealDigits[t] (* A196626 *) %K A196626 nonn,cons %O A196626 1,3 %A A196626 _Clark Kimberling_, Oct 05 2011