This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196668 #33 Sep 08 2022 08:45:59 %S A196668 17,29,41,53,61,71,83,89,101,103,113,127,137,149,151,157,193,211,239, %T A196668 241,251,257,269,293,307,311,313,317,331,353,359,373,379,389,397,401, %U A196668 433,439,443,457,461,463,479,499,503,509,521,523,569,571,577,587,593,599 %N A196668 The Chebyshev primes of index 2. %C A196668 The sequence consists of such odd prime numbers p that satisfy li[psi(p^2)]-li[psi(p^2-1)]<1/2, where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function. %H A196668 Dana Jacobsen, <a href="/A196668/b196668.txt">Table of n, a(n) for n = 1..4035</a> %H A196668 M. Planat and P. Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a> arXiv:1109.6489 [math.NT], 2011. %p A196668 # The function PlanatSole(n,r) is in A196667. %p A196668 A196668 := n -> PlanatSole(n,2); # _Peter Luschny_, Oct 23 2011 %t A196668 ChebyshevPsi[n_] := Log[LCM @@ Range[n]]; %t A196668 Reap[Do[If[LogIntegral[ChebyshevPsi[p^2]] - LogIntegral[ChebyshevPsi[p^2 - 1]] < 1/2, Print[p]; Sow[p]], {p, Prime[Range[2, 200]]}]][[2, 1]] (* _Jean-François Alcover_, Jul 14 2018, updated Dec 06 2018 *) %o A196668 (Magma) Mangoldt:=function(n); %o A196668 if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if; %o A196668 end function; %o A196668 tcheb:=function(n); %o A196668 x:=0; %o A196668 for i in [1..n] do %o A196668 x:=x+Mangoldt(i); %o A196668 end for; %o A196668 return(x); %o A196668 end function; %o A196668 jump2:=function(n); %o A196668 x:=LogIntegral(tcheb(NthPrime(n)^2))-LogIntegral(tcheb(NthPrime(n)^2-1)); %o A196668 return x; %o A196668 end function; %o A196668 Set2:=[]; %o A196668 for i in [2..1000] do %o A196668 if jump2(i)-1/2 lt 0 then Set2:=Append(Set2,NthPrime(i)); NthPrime(i); end if; %o A196668 end for; %o A196668 Set2; %o A196668 (Sage) %o A196668 def A196668(n) : return PlanatSole(n,2) %o A196668 # The function PlanatSole(n,r) is in A196667. %o A196668 # _Peter Luschny_, Oct 23 2011 %o A196668 (Perl) use ntheory ":all"; forprimes { say if 2 * (LogarithmicIntegral(chebyshev_psi($_**2)) - LogarithmicIntegral(chebyshev_psi($_**2-1))) < 1 } 3, 1000; # _Dana Jacobsen_, Dec 29 2015 %Y A196668 Cf. A196667, A196669, A196670. %K A196668 nonn %O A196668 1,1 %A A196668 _Michel Planat_, Oct 05 2011