This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196697 #31 Apr 03 2023 10:36:12 %S A196697 1,4,5,6,7,9,7,11,10,12,7,12,8,12,9,14,11,19,13,22,7,9,11,16,4,8,9,7, %T A196697 12,18,14,15,11,10,10,18,8,12,11,18,12,23,5,12,13,16,13,22,8,9,16,13, %U A196697 9,13,14,11,11,10,10,20,15,10,10,13,9,22,11,10,10,12 %N A196697 Number of primes of the form of 2^n +- 2^k +- 1 with 0 <= k < n. %C A196697 Conjecture: all terms of this sequence are greater than 0. %C A196697 Conjecture tested holds up to n = 10000. %C A196697 Terms for all n tend to be small integers. %C A196697 All Mersenne primes and primes of the forms 3*2^n+-1, 5*2^n+-1, 7*2^n+-1, and 15*2^n+-1 form a subgroup of this type of primes. %C A196697 A large prime that is explicitly found for this type is 2^1048576 - 2^891232 - 1. %C A196697 I conjecture the contrary: infinitely many elements of this sequence are equal to 0. Probably the first n with a(n) = 0 is less than a million. - _Charles R Greathouse IV_, Nov 21 2011 %H A196697 Lei Zhou, <a href="/A196697/b196697.txt">Table of n, a(n) for n = 1..10000</a> %H A196697 Chris Caldwell, ed., <a href="https://t5k.org/primes/page.php?id=101355">2^1048576-2^891232-1</a> %e A196697 For n=1, %e A196697 2^1 + 2^0 - 1 = 2^1 - 2^0 + 1 = 2: 1 prime, so a(1)=1. %e A196697 For n=2, %e A196697 2^2 - 2^0 - 1 = 2; %e A196697 2^2 - 2^1 + 1 = 3; %e A196697 2^2 + 2^1 - 1 = 2^2 - 2^1 + 1 = 5; %e A196697 2^2 + 2^1 + 1 = 7: 4 primes found, so a(2)=4. %e A196697 ... %e A196697 For n=11, %e A196697 2^11 - 2^5 + 1 = 2017; %e A196697 2^11 - 2^3 - 1 = 2039; %e A196697 2^11 + 2^2 + 1 = 2053; %e A196697 2^11 + 2^4 - 1 = 2063; %e A196697 2^11 + 2^5 + 1 = 2081; %e A196697 2^11 + 2^6 - 1 = 2111; %e A196697 2^11 + 2^6 + 1 = 2113: 7 primes found, so a(11)=7. %t A196697 Table[c1 = 2^i; cs = {}; %t A196697 Do[c2 = 2^j; cp = c1 + c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]]; %t A196697 cp = c1 + c2 - 1; If[PrimeQ[cp], cs = Union[cs, {cp}]]; %t A196697 cp = c1 - c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]]; %t A196697 cp = c1 - c2 - 1; %t A196697 If[PrimeQ[cp], cs = Union[cs, {cp}]], {j, 0, i - 1}]; %t A196697 Length[cs], {i, 1, 100}] %o A196697 (PARI) a(n)=my(v=List(),t); for(k=0,n-1, if(isprime(t=2^n-2^k-1), listput(v,t)); if(isprime(t=2^n-2^k+1), listput(v,t)); if(isprime(t=2^n+2^k-1), listput(v,t); if(isprime(t=2^n+2^k+1), listput(v,t)))); #Set(v) \\ _Charles R Greathouse IV_, Oct 06 2011 %Y A196697 Cf. A238900 (least k). %K A196697 nonn %O A196697 1,2 %A A196697 _Lei Zhou_, Oct 05 2011 %E A196697 Edited by _Jon E. Schoenfield_, Mar 15 2021