cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A196700 Number of n X 1 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

1, 2, 4, 6, 12, 22, 40, 74, 136, 250, 460, 846, 1556, 2862, 5264, 9682, 17808, 32754, 60244, 110806, 203804, 374854, 689464, 1268122, 2332440, 4290026, 7890588, 14513054, 26693668, 49097310, 90304032, 166095010, 305496352, 561895394
Offset: 1

Views

Author

R. H. Hardin, Oct 05 2011

Keywords

Comments

Every 0 is next to zero 3's, every 1 is next to one 1, every 2 is next to two 0's, every 3 is next to three 4's, every 4 is next to four 2's.
Column 1 of A196707.
The perimeter of cuboids with the dimensions of consecutive tribonacci numbers, signature (0,1,0). - Peter M. Chema, Feb 03 2017

Examples

			All solutions for n=4:
  0    0    1    0    0    0
  0    0    1    1    0    2
  1    0    0    1    2    0
  1    0    0    0    0    0
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) for n > 4.
G.f.: 1 - 1/x - 1/x^2 + 1/x^2/G(0), where G(k)= 1 - (2*k+1)*x/(1 - x/(x - (2*k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 09 2013
Empirical: a(n) = 2*(A001590(n) + A001590(n-1) + A001590(n-2)) for n > 1. - Peter M. Chema, Feb 03 2017
From Gregory L. Simay, Jun 23 2017: (Start)
a(n) = A000073(n+2) - A000073(n-2), the difference of two tribonacci numbers. The corresponding g.f. is (1 - x^4)/(1 - x - x^2 - x^3). E.g.: a(10) = A000073(12) - A000073(8) = 274 - 24 = 250.
The tribonacci formula arises from considering the number of compositions of n where only the order of parts 1,2,3 matters (part of an upcoming paper), which may be denoted by C(n [4). We are convolving the number of partitions of n with parts >3 with the tribonacci numbers. The number of partitions of n with parts greater than 3 is P(n) - P(n-1) - P(n-2) + P(n-4) + P(n-5) - P(n-6). (Derived from the corresponding gf which is (1-x)(1-x^2)(1-x^3)gfP(x).) The rest is algebra. It looks like C(n, [4) = P(n) + Sum_{j=0..n-3} P(n-3-j)*A196700(j+1). (End)

A196701 Number of n X 2 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

2, 11, 38, 136, 488, 1744, 6208, 22202, 79292, 282984, 1010760, 3609442, 12887556, 46021868, 164340008, 586827146, 2095503116, 7482801488, 26720080488, 95414259450, 340712829860, 1216643200052, 4344485254120, 15513628195858
Offset: 1

Views

Author

R. H. Hardin, Oct 05 2011

Keywords

Comments

Every 0 is next to zero 3's, every 1 is next to one 1's, every 2 is next to two 0's, every 3 is next to three 4's, every 4 is next to four 2's.
Column 2 of A196707.

Examples

			Some solutions for n=4:
..0..2....0..0....0..0....0..2....1..1....0..0....0..1....0..1....2..0....0..0
..0..0....2..1....0..2....2..0....0..0....2..0....0..1....0..1....0..0....0..2
..0..0....0..1....0..1....1..2....1..0....2..0....0..2....0..0....2..2....0..2
..0..2....0..0....0..1....1..0....1..0....0..0....0..0....0..0....0..0....0..0
		

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +16*a(n-3) +9*a(n-4) -a(n-5) +2*a(n-6) +2*a(n-7) for n>8.
Empirical g.f.: x*(2 + 9*x + 19*x^2 + 22*x^3 + 6*x^4 + 7*x^5 + x^6 - 2*x^7) / (1 - x - 4*x^2 - 16*x^3 - 9*x^4 + x^5 - 2*x^6 - 2*x^7). - Colin Barker, May 09 2018

A196702 Number of nX3 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

4, 38, 207, 1366, 8672, 55436, 353591, 2257739, 14423220, 92115943, 588320201, 3757410951, 23997532467, 153266354657, 978872278459, 6251798756146, 39928597422454, 255013470704155, 1628704187503479, 10402106496493731
Offset: 1

Views

Author

R. H. Hardin Oct 05 2011

Keywords

Comments

Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 4's, every 4 is next to 4 2's
Column 3 of A196707

Examples

			Some solutions for n=4
..1..1..0....1..0..0....0..1..1....0..2..0....0..1..0....0..2..1....0..0..2
..0..2..0....1..0..2....2..0..2....0..1..0....2..1..0....0..0..1....0..0..0
..1..1..2....2..0..1....2..0..0....0..1..2....0..0..1....2..0..0....2..2..0
..0..2..0....0..0..1....0..0..2....0..2..0....2..0..1....1..1..0....0..2..0
		

Formula

Empirical: a(n) = 2*a(n-1) +16*a(n-2) +54*a(n-3) +114*a(n-4) +239*a(n-5) +95*a(n-6) -1499*a(n-7) -3689*a(n-8) -5467*a(n-9) -343*a(n-10) +12342*a(n-11) +11754*a(n-12) -2955*a(n-13) +3006*a(n-14) +15969*a(n-15) +11712*a(n-16) +381*a(n-17) +5853*a(n-18) +8837*a(n-19) +2089*a(n-20) -4023*a(n-21) +2697*a(n-22) -1309*a(n-23) +137*a(n-24) -187*a(n-25) +46*a(n-26) -41*a(n-27) -4*a(n-28) -a(n-29) for n>30

A196703 Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

6, 136, 1366, 16676, 193326, 2264381, 26495227, 310276380, 3632827590, 42527506151, 497870194993, 5828719769741, 68238349389070, 798880050071593, 9352648440980667, 109493443755493253, 1281863203314446240
Offset: 1

Views

Author

R. H. Hardin Oct 05 2011

Keywords

Comments

Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 4's, every 4 is next to 4 2's
Column 4 of A196707

Examples

			Some solutions for n=5
..0..0..0..2....0..0..2..0....0..0..0..0....0..0..2..0....0..1..0..2
..0..0..0..0....2..2..1..1....2..0..0..2....0..2..1..1....0..1..0..0
..1..1..2..1....0..0..0..0....1..1..2..1....0..2..0..0....0..0..1..1
..0..0..0..1....0..0..0..1....0..2..0..1....0..2..1..1....1..0..0..0
..0..0..0..0....0..0..2..1....1..1..0..0....2..0..2..0....1..0..1..1
		

Formula

Empirical: a(n) = 3*a(n-1) +44*a(n-2) +418*a(n-3) +2123*a(n-4) +9666*a(n-5) +17867*a(n-6) -31103*a(n-7) -197975*a(n-8) -230889*a(n-9) -1128188*a(n-10) -10294716*a(n-11) -25363963*a(n-12) +10109804*a(n-13) +103009787*a(n-14) -41521218*a(n-15) -540648165*a(n-16) -490445197*a(n-17) +298496144*a(n-18) +581581325*a(n-19) -791636376*a(n-20) -6650364072*a(n-21) +7765218732*a(n-22) +63237542944*a(n-23) +47129253858*a(n-24) -50164097213*a(n-25) +221166151571*a(n-26) -68300476076*a(n-27) -1507350365119*a(n-28) +2286027931208*a(n-29) -1615011002135*a(n-30) -2064723761796*a(n-31) +10965745389067*a(n-32) -12557336858803*a(n-33) +12100326294111*a(n-34) -2941555694638*a(n-35) -5301314787748*a(n-36) -521040003542*a(n-37) -2211986829512*a(n-38) -684539722837*a(n-39) -11363446274967*a(n-40) +15750252315140*a(n-41) -2531664165706*a(n-42) -4802852996620*a(n-43) +18524903969559*a(n-44) -9899802947654*a(n-45) +9044730601964*a(n-46) +1636031611457*a(n-47) -4283599340178*a(n-48) +9289438091383*a(n-49) -13032765921092*a(n-50) -6827048634321*a(n-51) +5970500374922*a(n-52) -16177927247769*a(n-53) +5186623239157*a(n-54) -2348762640686*a(n-55) +2481169040671*a(n-56) -1056794241201*a(n-57) -989891859322*a(n-58) +1027346613037*a(n-59) -670566409353*a(n-60) +543900035351*a(n-61) +84211547551*a(n-62) +18236259246*a(n-63) +38945802085*a(n-64) -4280014106*a(n-65) +4341538315*a(n-66) +11264153476*a(n-67) +8779125376*a(n-68) -3365069472*a(n-69) +3792604437*a(n-70) -1532663159*a(n-71) -385210547*a(n-72) -83439919*a(n-73) -102572613*a(n-74) -5981192*a(n-75) +9692966*a(n-76) +2503246*a(n-77) -3875313*a(n-78) +1001324*a(n-79) -542833*a(n-80) -6802*a(n-81) +11947*a(n-82) +587*a(n-83) -260*a(n-84) -10*a(n-85) for n>87

A196704 Number of nX5 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

12, 488, 8672, 193326, 4114365, 88057485, 1883754015, 40313628190, 862817869506, 18466264182264, 395214121573203, 8458285032169106, 181022745479257594, 3874225541604098047, 82915675332387910699, 1774550041727447332819
Offset: 1

Views

Author

R. H. Hardin Oct 05 2011

Keywords

Comments

Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 4's, every 4 is next to 4 2's
Column 5 of A196707

Examples

			Some solutions for n=4
..0..1..0..1..1....0..0..2..1..0....0..0..0..0..2....0..0..0..0..0
..0..1..0..0..2....1..0..0..1..0....2..2..1..0..0....0..0..2..1..1
..0..2..0..0..0....1..0..1..0..0....0..0..1..2..1....2..2..1..0..0
..1..1..0..0..2....0..2..1..0..2....2..0..2..0..1....0..0..1..0..2
		

A196705 Number of n X 6 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

22, 1744, 55436, 2264381, 88057485, 3444722540, 134682461126, 5269250186071, 206166859931473, 8065792226445503, 315546555294232838, 12344751415733916603, 482952689817901349673, 18894135165739360648424
Offset: 1

Views

Author

R. H. Hardin, Oct 05 2011

Keywords

Comments

Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 4's, every 4 is next to 4 2's.
Column 6 of A196707.

Examples

			Some solutions for n=4
..0..0..0..1..0..0....0..0..0..2..0..0....0..0..0..0..0..1....0..0..2..1..1..0
..0..0..0..1..2..2....0..0..0..2..0..0....0..0..0..0..0..1....0..0..0..0..0..0
..0..2..2..2..0..0....2..1..1..2..0..2....0..0..0..0..0..0....0..0..0..1..1..0
..0..2..0..0..0..0....0..0..0..0..1..1....0..2..2..0..1..1....0..1..1..0..2..0
		

Crossrefs

Cf. A196707.

A196706 Number of nX7 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

40, 6208, 353591, 26495227, 1883754015, 134682461126, 9630587515529, 688873132970642, 49276676966789269, 3524626082557601875, 252104533342881651241, 18032369299020473778391, 1289809476341608457763412
Offset: 1

Views

Author

R. H. Hardin Oct 05 2011

Keywords

Comments

Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 4's, every 4 is next to 4 2's
Column 7 of A196707

Examples

			Some solutions for n=4
..0..0..0..0..0..1..1....0..0..0..2..0..2..0....0..0..0..0..1..0..1
..0..0..0..2..1..0..0....0..0..0..2..1..1..0....0..0..0..0..1..0..1
..0..0..0..2..1..2..2....0..0..0..0..0..0..1....0..0..0..0..2..2..0
..0..2..2..0..0..0..0....0..0..0..1..1..0..1....0..0..0..0..0..1..1
		

A196699 Number of n X n 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,1,0,4,2 for x=0,1,2,3,4.

Original entry on oeis.org

1, 11, 207, 16676, 4114365, 3444722540, 9630587515529, 90075372757265811
Offset: 1

Views

Author

R. H. Hardin Oct 05 2011

Keywords

Comments

Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 4's, every 4 is next to 4 2's
Diagonal of A196707

Examples

			Some solutions for n=4
..0..2..0..2....2..0..0..0....2..0..1..0....0..0..0..0....0..2..0..2
..2..1..0..0....0..1..1..0....0..0..1..0....2..0..0..0....0..1..1..0
..0..1..0..1....0..2..0..0....0..0..0..1....2..0..0..0....1..2..0..0
..0..0..0..1....0..1..1..0....1..1..0..1....0..2..2..0....1..0..0..2
		
Showing 1-8 of 8 results.