This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196720 #11 Apr 06 2017 07:51:51 %S A196720 1,2,4,8,13,25,33,61,81,116,140,256,282,530,606,692,823,1551,1653, %T A196720 3173,3391,3805,4177,8049,8345,11524,12508,15294,16204,31692,32048, %U A196720 63280,70834,77224,82048,91686,93597,185245,196109,212359,218223,432495,436031,867647 %N A196720 Number of subsets of {1..n} (including empty set) such that the pairwise GCDs of elements are not distinct. %C A196720 All pairwise GCDs of each subset are equal if there are any. %C A196720 a(n) >= A084422(n). %H A196720 Alois P. Heinz, <a href="/A196720/b196720.txt">Table of n, a(n) for n = 0..60</a> %e A196720 a(5) = 25: {}, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,5}, {1,3,4,5}. %p A196720 b:= proc(n, s) local sn, m; %p A196720 m:= nops(s); %p A196720 sn:= [s[], n]; %p A196720 `if`(n<1, 1, b(n-1, s) +`if`(1 >= nops(({seq(seq( %p A196720 igcd(sn[i], sn[j]), j=i+1..m+1), i=1..m)})), b(n-1, sn), 0)) %p A196720 end: %p A196720 a:= proc(n) option remember; %p A196720 b(n-1, [n]) +`if`(n=0, 0, a(n-1)) %p A196720 end: %p A196720 seq(a(n), n=0..20); %t A196720 b[n_, s_] := b[n, s] = With[{m = Length[s], sn = Append[s, n]}, If[n<1, 1, b[n-1, s] + If[1 >= Length[ Union @ Flatten @ Table[ Table[ GCD[ sn[[i]], sn[[j]]], {j, i+1, m+1}], {i, 1, m}]], b[n-1, sn], 0]]]; %t A196720 a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]]; %t A196720 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Apr 06 2017, translated from Maple *) %Y A196720 Cf. A143823, A196719, A196721, A196722, A196723, A196724. %K A196720 nonn %O A196720 0,2 %A A196720 _Alois P. Heinz_, Oct 05 2011